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A theoretical and experimental search for the so-called Weyssenhof behavior 
o f  a spinning particle, due to the noncollinearity o f  its velocity and momentum, 
has been undertaken. Z-independent solutions o f  ]~raxwell's equations had 
previously been produced with a nonzero s z component o f  the Poynting vector; 
indeed, 1robert emphasized that the spatial exponential damping o f  Fresnel's 
evanescent wave wouM entail a nonzero value for the integral S.f s z dx dy. 
Excellent experimental verifications o f  this point have been obtained by lmbert. 
Besides having no z component o f  their momentum, the energy-momentum 
quanta inside Fresnel's evanescent wave have typical tachyon properties, the 
imaginary character o f  their y component (normal to the reflecting surface) 
entailing that (in units such that c = 1) their x component is larger than the 
energy quanta. 1robert is now planning experiments to test these interesting 
properties. Thus, the two main aspects' o f  noncollinearity o f  velocity and 
momentum of  spinning particles would be displayed. 

1. INTRODUCTION 

Two related ideas (although, strictly speaking, not connected reciprocally to 
each other) have been proposed again and again by a few theoretical 
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physicists. The first idea is that the energy-momentum tensor T ~j (i, j, k, l = 
1, 2, 3, 4; x ~ = ic t )  appropriate for media endowed with a spin density e~¢Jlk 
should be asymmetric and obey (in flat space-time) the formula 

T ~ - -  T ji -~ ~kcr "z~k (1) 

~7~ being the divergence operator. It should be remembered that the classical 
theory of stressed continuous media supporting not only a force density 
f~(% 8, ~ = 1, 2, 3), but also a torque density fete1, uses an asymmetric 
elastic tensor E ~ obeying the formula 

E ~ - -  E ~-  = / ~ ¢  (2) 

which, when transposed in relativistic form and compared with (1), yields the 
very appropriate formula 

~kffijk :_= /~ij (3) 

between spin and torque densities. Incidentally, the condition for equality of 
the two divergences 

~jTiJ .= ~ T J i  = f i  (4) 

is complete skew-symmetry of the spin density criJk; the close analogy between 
formulas (3) and (4) should be noted. 

The derivation of formulas (1) and (3) is quite analogous to the classical 
derivation of formula (2); it has been given quite often and need not be 
repeated here. It is also part of the derivation of the well-known Noether 
formulas. Also, formula (1) arises in Dirac's theory for the spinning electron, 

then being Dirac's completely skew-symmetric ~iJkl, and T ij Tetrode's m 
canonical asymmetric energy-momentum tensor. It arises also quite naturally 
in almost all theories of spinning particles, for instance, in the Petiau- 
Duffin-Kemmer theory of spin --1 particles or, using de Broglie's (2) formulas 
for the photon's spin density, in both the Maxwell and the de Broglie-Proca 
theories of the photon. 

Among the authors who have used this kind of approach to the theory 
of spinning media, we cite ourselves, (~) Weyssenhof and Raabe, m 
Papapetrou, (5) Sciama, (~) and Kibble, (7) the latter three being interested in 
gravitational problems and non-Minkowskian metrics and connections. 

The second idea, which is manifestly related to the preceding one, 
although not in a one-to-one fashion because of obvious boundary value 
problems, is that the space-time 4-velocity of a spinning point particle is 
noncollinear with its momentum. Here again there exists a classical analogy: 
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the so-called Weyssenhof  dynamical  equations o f  a spinning point  particle, 

F'  = p "  (Sa) 

M ij  : V~p~ - -  VJp~ + S ;  ~ (Sb) 

are isomorphic  (s) to the classical equations o f  the statics o f  a stiff filament 
(resisting curvature and torsion): 

f = T~' (6a) 

n = t  x T x %' (6b) 

The isomorphism is as shown in Table I. This i somorphism also holds in 
the derivation o f  the "first" and "second"  equations (the latter vanishing if 
the filament is perfectly flexible, or  if  the point  particle is spintess). A charac- 
teristic feature of  the "second equat ion"  is the presence o f  the cross products  
t x T or  V i p  j - -  V ~ p  ~, entailing noncollinearity o f  the tension T and the unit  
vector t tangent to the filament, or  o f  the momen tum-ene rgy  pC and the 
4-velocity V ~. Thus, as is very well known,  the figure o f  a stiff filament 
festoons a round  the one o f  a flexible filament subjected to identical external 
tensions; however, it cannot  depart  far f rom the figure o f  the flexible filament. 
Similarly, the space-t ime trajectory o f  a spinning point  particle will slightly 

Table I 

Classical statics of a stiff filament (Three- 
dimensional Euclidean space) 

i i i l l l  , H , , I ,  

Relativistic dynamics of a spinning point 
particle (Four-dimensional Minkowskian 
space-time; x ~ ~ i c t ;  i, j ,  k ,  t = t ,  2,  

3,4) 

Curvilinear abscissa s Proper time -r 

Point on the filament r Point-instant x i 

Tangent unit vector t ~- r /  4-velocity ( V , V  ~ = - - c  2) V i ~ x~ i 

Tension T(s) Momentum-energy pi(~-) 

Linear density of applied force f(s) Applied 4-force F~(T) 

First equation [(6a)] f = 1"." First equation [(5a)] F ~ = p~ 

Angular tension (resisting torque) y(s) Internal angular momentum (spin) s[i~](r) 

Linear density of applied torque rl(s) Applied torque M[~J](~ -) 

Second equation [(6b)] ~q = t × T + y." Second equation [(5b)] 
M '~ : V~v ~ - -  V~o i -t- S "i~ 

, , , ,m ,11 / i 
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festoon around the trajectory of a spinless point particle embedded in the 
same space-time field. The same will be true in ordinary space if the external 
field is static, that is, time-independent in a particular Lorentz frame. This is 
known as the "Weyssenhof behavior" of a spinning particle, and 
"corresponds" classically to SchrSdinger's Zitterbewegung of Dirac's electron. 

As for the magnitude of the wandering of the spinning particle, it turns 
out to be of the order of the wavelength of the associated matter wave; the 
basic reason for this is that Planck's constant h is the quantum of both 
(4n~r times) the angular momentum and of the action. 

Of course, anyone taking the considerations we have noted seriously 
should be eager to devise an experiment displaying the Weyssenhof wandering 
of a spinning particle. There are two difficulties in this. First, the experimental 
procedure must be such that the associated boundary value problem will not 
destroy the phenomenon, as will be the case in all unsophisticated arrange- 
ments, due to the "integral equivalence" of the two expressions ff~[T ij duj 
and J'[~[ T~iduj whenever the contour integral at infinity ~[j~ eiJkdsj~ is zero; 
by definition, 6icdui ~ eij~[dx j dx k dx l] and 2ie dsij =~ eij~t[dx k dx~]; the 
integrals are taken over a three-dimensional surface extending to infinity. 

If this difficulty is overcome, a second one will appear: the expected 
spatial displacement being of the order of the wavelength, it will lie, so to 
speak, almost "inside" the diffraction pattern of any detecting apparatus, so 
displaying it will require much experimental ingenuity and skill. Our 
colleague, the experimentalist Dr. Christian Imbert (who is also an adept 
theorist in optics) has superbly solved these two difficulties in turn, as will be 
shown in the following. As the calculations (9) and the measurements a°) of his 
experiments have been published, we will refer the reader to them for more 
details. 

The first and brilliant suggestion by Imbert was that one would get rid of 
the "integral equivalence" difficulty by choosing an arrangement where a 
spatial exponential damping exists; absorbing media, however, should be 
discarded, because energy absorption will obviously render observation 
practically impossible. There is in optics, however, an interesting, long 
known phenomenon where an exponential damping factor is present and 
entails no energy absorption: Fresnel's evanescent wave associated with total 
reflection. This is indeed the first known tunnel effect, if by tunnel effect we 
mean a problem where conservation of energy and/or momentum is possible 
only with complex values of these quantities. As is well known, Fresnel's 
evanescent wave is formally a plane wave with a complex normal unit vector, 
the two components of which normal and parallel to the reflecting plane are 
respectively imaginary, and real but larger than one. In other words, and in 
units such that c == 1, the corresponding components of the propagation 
vector are imaginary, and real, but larger than the angular frequency co; 
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or the corresponding components of the photon's momentum are imaginary, 
and real, but larger than the energy. Thus, the photons tunneling inside 
Fresnel's evanescent wave have very peculiar properties, in that not only do 
they exhibit a Weyssenhof behavior, but they also display tachyon properties 
(the imaginary component of their momentum entailing consequences 
similar to those of the imaginary proper mass of tachyons proper). Thus, 
Fresnel's almost infallible physical intuition and theoretical genius made him 
hit here upon something extremely significant even today. 

Apart from the fundamental advantage of working with Fresnel's 
evanescent wave, the use of spinning photons in the domain of classical 
optics is interesting because, although the effective length unit is of course 
the wavelength itself, the fact that this wavelength is of the order of 4000- 
8000 A will make measurements more convenient than would be the case 
with, say, electrons or protons. For the other features of Imbert's very 
ingenious experiments, we refer the reader to his publications, and will now 
proceed with the theory of what we have termed the "photon's translational 
inertial spin effect." 

2. A PURPOSELY SELECTED SOLUTION OF THE 
VACUUM MAXWELL EQUATIONS 

The property of spinning particles that we intend to bring to an experi- 
mental test is of course a quite general one, which can be deduced from the 
equations of any spinning particle, as, for instance, Dirac's electron, m). The 
reason we have selected the case of the photon is not only that the wave- 
length range is convenient to work with, but also that the techniques of 
either classical optics or high-frequency radio waves make it quite easy to 
reflect, refract, or polarize the photons. So we will, first of all, select ad hoc a 

class of vacuum solutions of Maxwell's equations. 
Let ~b denote any of the ten components of the vacuum photon wave 

(E, H, A, V) in rectangular Cartesian coordinates x, y, z, under the special 
assumption 

_ =  0 (7) 

so that the photon's  momentum has no z component. For simplicity, we assume 
a "harmonic" time dependence; that is, the time dependence of the ten 
components will be through a common factor exp(itot): 

~b ~ ~boexp(i~ot ) (8) 

Then, ~b 0 is a solution of the so-called Helmholtz equation 

(~" + ~"  + o~ ") ~b o = 0 (9) 

8251212-313 
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Now,  we superpose (with the same w) a so-called "electric-type solution" 
(E): 

E~ =- E . ,  H~ == -l-rio -~ ~uE~, Hu = - - j~ - :  ~.Ez (10) 

and a "magnet ic- type solut ion"  (H) 

Hz -~ H . ,  E~ = --rio-: ~uHz, E u = q-jw-: O~H. (1 I) 

(all the other  components  being zero). 
I n  (8), we have taken the pho ton  wave function ~b to be complex: as 

Dirac (~) and  de Broglie (~) have both  pointed out,  this should be taken as a 
fundamenta l  character  o f  the (nonsecond-quantized) pho ton  wave func t i on - -  
and a proper ty  playing an impor tan t  role in our  subsequent deduction. 2 

F r o m  the formulas  (10) and ( t l ) ,  a M  the definition o f  the Poynt ing  
vector 

s - ~ ( E *  x H-~-E  X H*) (12) 

the following expressions are obtained: 

s~,~ = (j/4o~)[E~*@z,u) E~ + H~*(Oz,u) H~] 

s~ = (l/4oJ2)[~zEz * ~H~ -~ OxHz* ~,E~) -~ c.c. 

(13) 

(14) 

where 

[8] :~ c~ - -  0 (15) 

denotes the well-known G o r d o n  current operator.  While there is nothing 
surprising connected with the x and y components  (13) of  the Poynt ing 
vector,  the existence of  the nonzero s, component ,  according to (14) [and in 
contrast  with (7)] deserves more  attention. First and very significantly, it 
depends on the relative phase o f  the electric (E) and magnetic (H) solutions. 

F r o m  (13), we easily calculate 

a~s~ --  ~s~ = (j/2oJ)@~E~* O~E~ + ~H~* ~H~) + c.c. (16) 

: We must of course distinguish the j (j~ ....... 1) arising from the optical or quantal for- 
malisms from the i (? = --1) arising from the Space-time metric. 
This point needs commentary. In an interesting article, Ricard ~:~ has given a very under- 
standable classical explanation of both the longitudinal Goos-H~nchen shift and the new 
transverse Imbert shift by using real solutions of MaxweU's equations, with sines and 
cosines replacing the e's with imaginary exponents. The point is, however, that many 
of the significant and elegant formulas implying the complex ~b's and ¢*'s are lost in such 
a formalism. 
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Now, if the boundary conditions are such as to allow that, a denoting a real 
constant, 

H~(x, y) = jaE~(x, y) (17) 

then (16), (17), and (14) entail 

s~ := [1/co(a + a-1)](~su -- 0~s~) (18) 

This formula is closely connected with the fundamental formula (1), as can 
be shown (~4) by inspection of de Broglie's {2) formulas for the photon's 
canonical momentum-energy tensor, and Dirac-like current and spin den- 
sities. 

Formula (18) assumes the integral form 

(19) 

It is thus clear that with almost all usual solutions of  Maxwell's equations 
the transverse energy flux associated with s~ will be zero when integrated over 
the whole x, y plane. 

At this point of our research, Imbert adduced a very clever suggestion 
that some previous calculations of his (15) had prepared. Why not work with 
Fresnel's evanescent wave associated with total reflection? This wave is 
excited in the vacuum, and thus nothing will be lost of the intrinsic character 
of the photon property we are looking for. The boundary conditions on the 
reflecting surface are such that the condition (17) is easily satisfied: one has 
simply to reflect a plane, eltipticatly polarized wave. And-- las t  but not 
least--the presence of  a real exponential damping factor in the direction y 
orthogonal to the reflecting surface will entail that the integral (19) assumes 
a finite value q~ when extended over the semiplane z -~ 0, y < 0 inside the 
evanescent wave (or equivalently, to the whole z = 0 plane(16)). 

Now, we may remember that Kristoffel (17) and Renard (~s) have produced 
a theory of the well-known longitudinal Goos-H~inchen (2°) shift in total 
reflection based upon the existence of the longitudinal energy flux 

z = 0  

inside Fresnel's evanescent wave. lmbert  (9) then used a quite analogous 
calculation to predict a Iateral shift by total reflection of an ellipticatly 
polarized plane wave, the maximum value of  which occurs, as shown by 
Ricard, ~2°) when the evanescent wave is (left or right) circularly polarized 
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in the sense that a ----- ~1 ;  this does not exactly correspond to circular 
polarization of either the incident or the reflected plane wave. 

However, for an experimental observation of the calculated lateral shift, 
it is not advisable to use this theoretically optimum case. As the calculated 
transverse shift is very small, of the order of half the wavelength, that is, some 
20 times smaller than the longitudinal shift observed by Goos and H~inchen, 
it will be necessary to multiply it by N successive reflections. As is well known, 
in the limiting case of total reflection, the theoretical phase difference between 
the two linear polarization states parallel and perpendicular to the incidence 
plane is preserved exactly, and this of course remains almost true in quasi- 
limit total reflection. Thus, in particular, a pure helicity state of the incident 
photons will be preserved. This is a very favorable circumstance, that will 
allow a multiplication by one of the two Imbert devices: (1) an isosceles 
triangular prism, where total reflection occurs on the "basis" and the light 
rays hit orthogonally the semireflecting "sides"; each of the latter reflections 
reverses the helicity sign, which is the condition for adding the transverse 
shifts (Fig. 1). (2) An equilateral triangular prism, 3 inside of which the light 
follows a helical regular polygon, the slope of which is ajusted so that 
successive quasilimit total reflections occur (Fig. 2). 

With both of these multiplying devices, and marking the beam with a 
rectilinear object, 4 the two halves of which were illuminated by left and right 
circularly polarized light (with the possibility of exchanging the two helicity 
states by turning a quarter-wave plate) (Fig. 3), Imbert has shown that the 

3 This solution to the experimental problem had been suggested by Goillot. 
4 The rectilinear object is in fact a sophisticated one: the so-called Wolter object, ~21~ the 

image of which is almost a 3-function. 

Fig. 1, 

object R 
s ~ T × × / z  xx×xx x 

( a l  

coated faces 

s 'v 

Ib) 
The semireflecting isosceles multiplying prism. 
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Fig. 2. The equilateral multiplying prism. (a) In working condition (28 total reflections). 
(b) In a slightly disturbed position showing light escaping. 

new calculated transverse shift does indeed exist, with the right sign and 
magnitude (Fig. 4). In other words, just as the longitudinal Goos-H~inchen 
shift proves the existence of a longitudinal energy flux in the vacuum of  
Fresnel's evanescent wave, so the new lateral Imbert  shift proves the existence 
of  a corresponding transverse flux when the incident and emergent plane 
waves are circularly polarized. In other words, the energy f lux of  the spinning 
photons is not collinear with their momentum inside Fresnel's evanescent wave. 

._o2 
O1 

Sa 

© ©  

Fig. 3. The overall experimental arrangement. 
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Fig. 4 

Figure 5 explains the phenomenon in terms of geometrical optics and 
using the isomorphism between the statics of stiff filaments and the dynamics 
of spinning photons explained in Section 10. Suppose a stiff filament is 
suspended by its extremities and loaded by two weights p~ as shown in the 
figure, and that one twists the filament. It is well known (and easily verified) 
that the curved portion of the filament assumes a helical shape, the helicity 
sign being the same as that of the twist of the filament. 

~, ~ ~= - - ~  Z ~  
. . . . . .  ~ _ 2 e  . . . . . . . . . .  ~ , ~  

' ~ ° ~  ~i ~ ~!--', . . . . . . . . . . .  ~ !~ ' ! "  
I I I 
I I I I [ I 

I I I I I 
I I I I 
I I I I 

I 1  

! A .  I A z  . . G H / F r  

G'oo.s.//,~C,~'E-,",," S H I F - ~  

Fig. 5. Total reflection of a spinning photon (positive helicity). 
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Then, using the same figure, we imagine that all points y > / 0  are 
immersed in a refracting medium of index n and all points y < 0 are in the 
vacuum. The figure may then be taken as displaying the total reflection of  a 
spinning photon, Ax being the longitudinal Goos-H~inchen shift and Az the 
new lateral Imbert shift. 

3. ENERGY-MOMENTUM QUANTA INSIDE FRESNEL'S 
EVANESCENT WAVE: TACHYON PHOT O N S  

It is obviously desirable to experimentally test the properties of the 
energy-momentum quanta inside Fresnel's evanescent wave, so that the 
"noncollinearity of velocity and momentum" of the spinning photons is 
operationally proved in both of its aspects. To this end, we now pursue the 
theoretical investigation concerning these quanta. For  simplicity, we use 
units such that c = 1 and h = 1. 

Fresnel's evanescent wave is formally a plane wave with a complex 
propagation vector. Denoting by ki the propagation vector of  the plane wave 
incident in the medium of index n 

( k i  -~- n c o >  o); k i  x ~-  no, co > co, k i  u = nflco > O, k i  z - -  0), 

the complex propagation vector of the evanescent wave has components 
k ~ = k i  ~ -= n~co > ~o, k u ...... - - j ( n 2 ~  ~ - -  1)1/5 o9, k ~ = 0, so that 

(k~) 2 + (k~)2 = ~o~ (20) 

There have already been experiments displaying the absorption of  the 
energy quanta co inside Fresnel's evanescent wave. We are interested now in 
simultaneous detection of  the absorption (or stimulated emission) of  both 
the energy quanta co and (complex) momentum quanta k. 

At this point, we consider first the transition between two electron 
states 5b a and ~b b. Inserting the preceding energy-momentum quanta in 
Feynman's expression (A,/z = 1, 2, 3, 4) 

~ -  = A~  f f f f e x p ( j k . x " )  ~ y a ~ b  d ~ x  (al)  

for the transition amplitude, with x 1 = x ,  x 2 = y ,  x 3 = z ,  x ~ ~ i t ,  we see 
that the imaginary k ~ will contribute to the transition amplitude of a "tachyon 
photon" of  momentum k ~ = n~eo > co, k ~ = k" = 0. In other words, if the 
electron wave function ~b has little extension along the y coordinate, it will 
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i ; T d o x  ~ ~.Z 

I ~" . . . . .  '~- -I/7": 

I 7 
I 
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Fig. 6. 
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j ~ I ~  n 

. . . . . . . . .  4 - - -n~ . . .  
~5 c ~  r c ~ ~ F  

l / ~ /q s~/,-e/e 

Beam of particles undergoing transitions inside Fresnel's evanescent wave. 

practically feel a rather peculiar "quasi plane wave" of tachyon photons with 
an exponential y dependence. 5 

This would allow in principle the possibility of a first-order photoelectric 
effect on free electrons. C2zl If  (Fig. 6) an electron beam is sent inside 
the evanescent wave parallel to the x axis with exactly the right velocity 
fie (or fir), it would absorb (or emit) a tachyon photon of energy ~o and 
momentum k • = n~03 > 03 (Fig. 7). However, this (very striking) thought- 
experiment is not a feasible one, because a large value of the energy quanta o) 
and of the penetration depth of the wave ll(n2c~ 2 - -  1)1/~ 03 are contradictory 
requirements. Before we proceed, let it be clear that the evanescent wave, 
with a phase factor exp[j03(t -- nozx)], has a phase velocity 1 llno~} < 1 (as 
is appropriate for a wave carrying tachyon photons). With a velocity 
f ie  ~ / 3 F  ~ line<, our electrons feel a (nearly) standing photon wave, and 
exchange with it momentum but (practically) no energy quanta. With a 
velocity/3 > l /ha,  they would feel a phase traveling backwards. 

Fortunately, there exists a practical possibility for testing the properties 
of our tachyon photons: hyperfine transitions in an atomic beam traveling 
parallel to the x axis. In this case, the frequancy 03 will be in the Hertzian 

5 It  is possible to approximate a plane tachyon wave even much better by using two 
parallel reflecting surfaces rather than one; then, the real exponential is replaced by cosh 
or sinh functions assuming, respectively, the values 1 and 0 in the middle of the space 
between the surfaces. ~2~ 

/2 

/ 

. . . . . . . . . . .  I 

i 
#1 e¢ od  

Fig. 7. First-order photoelectric effect on free electrons. 
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range, and the penetration depth of the wave will be such as to allow experi- 
ments.(2~} 

Let (Fig. 8) coF and coe denote the rest masses of atoms on the two 
levels we are considering (e ~ c o ~ -  coF > 0), and (g?F, KF ~=/3~g)F) and 
(£2~, KE ~ /3J2E)  two points on the corresponding energy-momentum 
hyperbolas (F) and (E) 

QF2 _ KF~ = coF~ .Q2 __ K z = o~E2 (22) 

The transition will occur if 

(23) 

Geometrically, we are finding the four intersection points of the hyperbolas, 
one of  which is translated by the vector (no,co, co); two of these points are at 
infinity and need not concern us. 

From the preceding relations, we easily deduce a second-order equation 
in flF (or in/3e) which, as co, e ~ coe, coE, whence/3e ~ / 3 E ,  assumes the 
approximate form ~5~ 

(n%~2co ~ + e 2) [33 - -  2no~w2fi ÷ (co + e)(co -- c) ~ 0 (24) 

We are interested in a small value for/3, that is, in cases such that 

I o ~ -  E I < c o ,  e; 

then, the small root is/3 ~ (co -- E)/nc~co, whence 

(~o - ,) lco ~ n=/3 (25) 

If  n~ ~ 1, that is, if ordinary or limiting refraction occurs, (25) is the 
formula of the ordinary Doppler frequency shift. In our case n~ > 1, so we 
have a generalized Doppler shift such that the x component of  the photon's 
group velocity is larger than 1--again a tachyon property, and an experimen- 
tally testable one. Imbert is presently planning experiments along these lines. 

1"2 E 

Fig. 8. Hyperfine transitions in an atomic beam. 
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In the Lorentzian frame of velocity 1In% the atoms exchange with a 
(standing) photon wave momentum quanta, but no energy quanta. In frames 
of velocity larger than 1/n~, the photon's phase travels backwards, and 
emission and absorption processes are exchanged; that is, f2e > f2 e although 
oJ F < o~E. 

4. THE QUESTION OF THE PHOTON'S  ENERGY-MOMENTUM 
TENSOR 

The classical energy-momentum tensor of the electromagnetic field is of 
course the Maxwell one, which is symmetric in vacuo with the well-known 
expression (~,/3 ----- 1, 2, 3) 

( M 4~ -= w ~ ½(E*E q- H ' H )  
MiJ =-- l M ~  ~(E*~E ~ -k H*~H ~ -k c.c.) - -  w3 ~ (26) 

( M  ~4 = M 4~ = --is ~ ~ ~ (E* 'H  ~ -- E*~H ~ -k c.c.) 

Inserting the expressions (10) and (11) with 

¢ ~-- ~b o exp[jw(t - -  nax) -- (n2a 2 - -  1) 1/2 wy] (27) 

and with the definition 

M ~-- Eg~Eo~ + Ho*~Ho ~, N ~--j(H*~Eo z --  Ho~E *z) (28) 

we obtain (19) 

MiJ ~ ½exp[--2(n2a 2 -- 1)l/2ojy] 

)< 
- - M  O - - ( n % ~ 2 - - 1 ) l / 2 N  --ioc~M 1 

0 0 0 
--(n%~ ~ -  1)1/2N 0 (1 --n2c~2)M --ina(n~a 2 -- 1)1/2N I 

--ino~M 0 --inc~(n%~ 2 -  1)1/2N n%~2M ] 

(29) 

The values nc~M and na(n%~ 2 -- 1)1/2N [inside the last row of (29), 
modulo the factor --i] of the energy fluxes s ~ and s ~ have been experimentally 
tested in the sense that they are those which have yielded the correct explana- 
tions of, respectively, the Goos-H/inchen shift agl by Kristoffel (iv and Renard(18) 
and of the new transverse Imbert shift (1°) by Imbert(% However, when 
viewed as momentum densities, that is, in the fourth column rather than in 
the fourth row, these same expressions cannot be reconciled with what we 
have learned in Section 3 concerning the "tachyon photons." First, the 
Maxwell tensor yields a nonzero momentum density in the z direction (with 
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a nonzero in tegrated value), while we know that the photon 's  momentum has 
no z component.  Second, we see that ( - - i  times) the ratio of  the momentum 
density in the x direction to the energy density is, according to (29), 1/no~ < t ,  

while our previous study of the tachyon photons has yielded k~/oo = n~ > 1. 
I t  is obvious that a symmetric energy-momentmn tensor (i.e., essentially 

the Maxwell tensor in the vacuum) will never allow the momentum density 
M 4~ to be zero if the energy flux M ~4 is nonzero. Thus, we fall back on the 
conclusion that the noncollinear velocity and momentum of spinning 
particles require an asymmetric energy-momentum tensor even in vaeuum. 

I t  is also clear that  if the Maxwell tensor (29) does not yield the right 
expressions for the momentum densities, it is because its relation to the 
momentum operator jd (that is, also to the propagation vector k of  plane or 
evanescent waves) is too indirect. (~6) Thus, we are led to consider the asym- 
metric canonical energy-momentum tensor, that  is, de Broglie's (~) tensor, for 
the photon field, 

T i~ ~ -~A~*(~ ~) B ~ + c.c. (30) 

I t  is the tensor canonically associated with the Lagrangian 

1R *ni~ (3I) L ;~ Ai*[0j] B j~ + ~o~i~ + c.c. 

(whence the field equations B ~j ~ ~A 5 - -  ~JA ~, O~B ~ --- 0, follow). 
Using the transverse gauge in the rest frame of  the refracting medium, 

V = 0, A == jco-~E (32) 

one easily finds (~7) that the expression of the asymmetric de Broglie tensor 
inside FresneI's evanescent wave is 

TiJ = ½exp[--2(n%~ ~ --  l):/2coy] 

0 0 (33) 
× 0 0 

\ - - inc~M 0 --ino~(n2a 2 - -  1)~/2N M '  / 

where, by definition, 

M '  ~ E 0 * %  z + (2n2~ 2 - -  1) Ho*~lCg (34) 

Comparing (33) with (29), we see first that the energy fluxes are exactly the 
same as before: 

T ~ -= M ~4, c~ = 1, 2, 3 (35) 

that is, that the de Broglie tensor also gives the experimental energy fluxes. 
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Second, inspecting the fourth column of (33), we find a zero momentum 
density in the z direction, in full accord with the fact that the photon's 
z-momentum component is zero: k" = 0. Also, ( - - i  times) the ratio of the x 
component of the momentum density to the energy density is now found as 
n~ > 1, in full accord with the tachyon photon property that k~/co = n~ > 1. 

Thus, everything is now all right with the momentum densities. 
Finally, the intrinsic asymmetry of the de Broglie canonical energy- 

momentum tensor and its quite direct relation to the energy-momentum 
operator j~a have settled all matters. Thus, in full conformity with the con- 
siderations in Section 1, asymmetry is a fundamental property of the energy- 
momentum tensor of spinning particles. 

5. CONCLUSION 

We do not pretend that the answers to all significant questions raised by 
the preceding considerations have been given. Among other things, a theore- 
tical analysis of the linear and angular recoils of the reflecting surface is an 
interesting task. 

What we do say is (1) the existence of an energy flux through the incidence 
planes has been experimentally demonstrated, in full accord with its theoreti- 
cal prediction; and (2) there is no reasonable doubt that the very peculiar 
properties of "tachyon energy-momentum quanta" lying inside the incidence 
planes should come out experimentally as they are predicted. 

Both statements taken together vindicate the claim of some theoretical 
physicists that under appropriate circumstances the velocity and momentum 
of spinning particles are noncollinear. 
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