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The Wheeler Feynman (WF) relativistic theory of interacting point particles, 
generalized by acceptance of an arbitrary spaeelike interaction, is shown to 
possess a privileged status, reminiscent of the "central force" interactions occur- 
ring in Newtonian mechanics. This scheme is shown to be isomorphic to the 
classical one of the statics of interacting flexible current-carrying wires obeying 
the AmpOre-Laplace (AL) formulas: to the tension T (T 2 = const) of the wire 
corresponds the momentum-energy pi (pipi= _cem 2) of the particle; to the 
Laplace linear force density - f f I  x dr corresponds the Lorentz force QH ij dr ff to 
the Laplace potential ir -1 dr corresponds the WF potential Q6(r 2) dr j, etc. Among 
the differences, there is self-action in the AL scheme and no self-action in the WF 
scheme. A stationary energy principle in the AL scheme is isomorphic to Fokker's 
stationary action principle in the WF scheme. 

1. INTRODUCTION 

In the Newtonian mechanics of interacting point particles the case of cen- 
tral forces, with an arbitrary distance law, was preferred paradigm, where 
the formalization was very straightforward, easily yielding "general 
theorems." This paper aims at showing that, in the special-relativistic 
dynamics of interacting point particles, the elegant Wheeler-Feynman (1) 
scheme, generalized so as to accommodate an arbitrary spacelike 
interaction, 12) is favored in an analogous way. It goes without saying that a 
spacelike interaction, with any pair of line elements on the space-time tra- 
jectories interacting with each other, is the most straightforward 
generalization of Newton's direct interaction at a distance. 

t Ins t i tu t  Henr i  Poincar6,  11 Rue P. et M. Curie,  75005, Paris.  

731 

0015-9018/85/0600-0731504.50/0 © 1985 Plenum Publishing Corporation 



732 Costa de Beauregard 

At this point the isomorphism between the classical statics of filaments 
and the relativistic dynamics of point particles that I have stressed 
elsewhere ~3) should be recalled. The correspondence table (x4= ict; i, j ,  k ,  
l = 1, 2, 3, 4; V i - dxi/dO, Vi V i = - c  2) is shown in Table I. 

This table can be generalized (3) so as to accommodate "angular ten- 
sions" and angular momenta (Weyssenhofs equations(4)), but this is not 
needed here. 

It is clear that, developed along such lines, the relativistic dynamics of 
interacting point particles should display features corresponding to those 
of, say, interacting current-carrying wires, each element of a wire 
interacting with each element of another wire. What then comes out goes 
beyond what was expected: while (as is well known) the Lorentz force 
U - Q H U ! / )  applied to a point charge Q by a magnetoelectric field H is 
exactly corresponds to the Laplace linear force density - t H  x t applied to 
a current element it, it turns out that the Wheeler-Feynman (WF) field 
strength generated by a line element also corresponds exactly to the 
Laplacian one--and so do the associated 4-potential A; and vector poten- 
tial A. The correspondence table is (q~' denoting the derivative of q~ with 
respect to its argument) shown in Table II. 

However, there are differences between the two cases. In the WF case, 
as the trajectories are timelike and the interaction is lightlike (or 
spacelike(2)), there is no self-action. In the Amp6re-Laplace (AL) case of 
current-carrying wires no such restriction occurs, so there is a self-action, 
each element of one wire interacting with each element of the same wire. 
Incidentally, in Dettman and Schild's (5) generalization of the Wheeler- 
Feynman scheme, timelike interaction is not excluded, so there is self- 
action. 

Table I. Correspondence Table 

Euclidean 3-space ~ Minkowskian 4-space J /  

Filament r(O) 

Curvilinear abscissa 0 
Line element dr 
Unit  tangent vector t-= dr/dO 

Linear force density f 
Tension T 
Equation dT = f dO 

Flexible filament t x T = 0 
Special case t .  f = O, T 2 = const 

Timelike trajectory ri(O) 
Proper time 0 
Line element dr i 

4-velocity V ~ ~ dr~/dO 

Applied force UJ or U~_F~JVj 
Momentum-energy  pi 
Equation dp ~ = UJ dr~ = F dO 

Spinless particle V~p j - VJp~ = 0 
Special case F ~ =  - - F  ji, F i F i = O  

pipl -- c2m 2 = const  



Relativistic Dynamics of Interacting Point Particles 

Table II. Correspondence Table 
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Current intensity i Electric charge Q 

Laplace field 
dH = -i~o'(r2)r x db 

Laplace potential 
dA = i~o(r 2) db 

WF field 
dH~ = Qq~'(r2)[r ~ dbJ - rJ db ~] 

WF potential 
d A i =  Qq~(r 2) db i 

Another difference is that, in the WF case, a conservation theorem 
holds for the total momentum-energy, with no analog in the Amp6re- 
Laplace case. 

Finally, the whole array of formulas is deducible from an extremum 
principle: Fokker's stationary action principle in the WF case, and a 
corresponding stationary energy principle in the AL case. 

The variation must be carried out with the charges Q or the intensities 
i (respectively) kept constant--a clear mathematical prescription, but not 
an easily realizable one in the AL case. 

2. A PRIVILEGED EXPRESSION OF ACTION AND REACTION: 
THE WHEELER-FEYNMAN BRACKET 

As mentioned in the Introduction, we require that the distance depen- 
dence of the interaction between two line elements da i and db ~ (which we 
denote by q/(r]b ) because it will go into ~o(rZb) when using the potentials) 

i is timelike. be zero when rab 

The magnitudes entering the expression we are looking for are the 
three 4-vectors da ~, db ~, ra bi , the function q)' or q), and the two charges Qa 
and[ Qb. As the length of the momentum-energy p Z - r n V  ~, p~pi = -c2m 2, 
must be preserved, the force QaH~{< created at a i by b t must be skew sym- 

i d b  j _  rJb d b  i, s o  that metric and thus propertional to rab 

dZP i = Q a Q b  ' 2 i ~o (rab)Erab db; d a j -  r~b db ~ daj] 

dp~a is obtained by the integration ~-2~ db of this expression. Let it be 
remarked that, by the substitution J / - ~  d °, pi ~ T and Q ~ i, this formula 
becomes identical to the Laplace formula for currents, provided that the 
wire is perfectly flexible (i.e., not resisting torque). 

If this formula is to yield an action-and-reaction statement, the bracket 
j i must be completed by the term --rab da dbj, and this term must vanish in 
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the integration ~ + ~ db. 
~o'(r 2) dr 2 =- (p(r2), and 

Finally 

This is indeed the case, 

(p(r 2) = 0 if r 2 is timelike 

as 2r£~dbj=dbE(r£b)2] ,  

(1) 

d2p~ = - d 2 p ~  = Q~Qbq)'(rZb)[r~b da 2 dby - r£b(db ~ daj + da ~ dbj )]  (2) 

The bracket in formula (2) we call the WF bracket. Strictly corresponding 
to it is an AL bracket, also entailing an action-and-reaction statement; then 
the nullity of the integral ~ db stems from the fact that it is a closed integral, 
~db.  

Now we remark that - Qbcp'rJ daj db i =  - ½Qbdatp db i is none other than 
the variation at a of the potential A{~) generated by the line element Qb dbi. 
Therefore, setting 

A { a ) - Q b  _ (p(r]b) db i 
oO  

(whence follows 8iA{~)=0 ) and defining the "combined 
energy" as 

p i  a = pi + Q~A{a) 

(3) 

momentum 

(4) 

(5) 

we rewrite formula (2) in the simplified form 

d2p~ = --d2p~ = Q ~ Q s  go'(r]b)(ri~b da j dbi) 

we call the last parenthesis the "WF parenthesis." Let it be remarked that 
the right-hand side of formula (5) is of a "central force" type. An exactly 
corresponding argument holds in the LA formalism, the formula for A(a) 
being well known. 

Denoting e and/3 the proper times of particles a and b and applying 
the operator 

_ (6) 

to the WF bracket or parenthesis, respectively, with a spacelike separation 
of a and b, Wheeler and Feynman obtain expressions for the "potential 
momentum-energy" P;b or the "combined potential momentum-energy" 
P~b, respectively, and the conservation theorem 

(7) i i i _  i p ~ +  i Pa + Pb + Pab - -  Pa + Pab = const 

(without correspondence in the LA formalism). 
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Of course the whole argumentation, here presented for two interacting 
charged point particules or current elements, is easily extended to the case 
of n particles or current elements interacting two by two. 

The whole set of preceding formulas is easily derived (~'3) from an 
extremum principle: the Fokker (6) action principle 6s¢ = 0  applied to the 
expression 

,~/--~fpidai+ ~ QaObffqo(r~)daidbi (8) 
a a ¢ b  

in the WF scheme, the energy principle 67#/= 0 applied to the expression 

~ = - ~ T a ' d a +  ~ iaibff~o(r~)da'db (9) 
a a & b  

in the AL scheme. 
Finally, restriction to the electromagnetic case is obtained as shown in 

Table IIL 

Remark. In formula (9), with ~0(r 2) = I/r, the double integral com- 
prises the well-known mutual and self-energies of the currents. 

In the simple integral, "minus" the tension T of a filament shows up as 
the linear density of a potential energy. Below we give two examples show- 
ing that this is a physically sound interpretation. 

1. Consider a rope hanging from one extremity in a constant gravity 
field g; fixing to the rope a weight mg successively at heights differing by l, 
we obtain two configurations where the potential energy differs by 
mgl -T l .  The location of this potential energy must be in the rope. 
Therefore - T is the (negative) linear density of potential energy contained 
in a stressed filament. 

2. Consider two pulleys of equal radius R connected by a belt and 
rotating with an angular velocity (L One pulley acts as a motor and the 
other as a receiver, so that torques + C and - C are respectively applied to 
them and the tensions of the two straight segments of the belt are T0 + T 

Table III. Electromagnetic Case 

AL statics of currents W F  dynamics of charges 

qo(r 2) = 1/r (p(r 2) = 6(r 2) 
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and To - T, with C = 2 R T .  If V = Rf2 denotes the linear velocity of the belt, 
the power flowing from motor  to receiver is P = C O  -= 2TV. So, this power 
is flowing along both segments at the velocity V, with linear densities - T  
along the stressed, and + T along the unstressed, segment. 

3. BRIEF C O N C L U S I O N  

Among the various schemes of relativistic dynamics of interacting 
point particles that have been proposed, (7-9) the one ~1"2'4) that (as explained 
here) is isomorphic to the classical statics of interacting flexible filaments 
has the merits of manifest covariance, conceptual simplicity, physical 
plausibility, and avoidance of such unobservables as a "supertime." 

Together with their generalization of the Wheeler -Feynman (1~ scheme, 
Det tman and Schild (4) have produced the six-component angular momen-  
tum conservation theorem, entailing of course ~1°) the rectilinear motion law 
of the barycenter. Katz  (2) has produced an interaction model differing from 
Wheeler and Feynman's  electromagnetic one-- these  two being, up to now, 
the only known examples in this category. 

The author  expresses his gratitude to the three anonymous referees for 
their very useful and helpful remarks. 
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