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To Believe Or Not Believe In The A Potential, That’s a
Question. Flux Quantization in Autistic Magnets.
Prediction of a New Effect
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Electromagnetic gauge as an integration condition was my wording in previ-
ous publications. I argue here, on the examples of the Möllenstaedt-Bayh and
Tonomura tests of the Ahraronov–Bohm (AB) effect, that not only the trapped
flux � but also, under the integration condition A ≡ 0 if � = 0, the
local value of the vector potential is measured.
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1. FOREWORD

This essay, together with a closely associated one, is dedicated to my good
friend Franco Selleri in remembrance of our exchanges concerning funda-
mental physics. He is now busy scrutinizing the relativity theory, uphold-
ing unconventional testable ideas. Following his example, I allow myself to
question here prevailing views pertianing to the interpretation of the elec-
tromagnetic potentials.

An analogy exists between Selleri’s thoughts concerning the Sa-
gnac optical effect and mine concerning the Aharonov–Bohm (A.B.) and
Meissner electronic effects: both are expressed as a flux through a closed
contour: Sagnac’s via flux of the rotational velocity ω, A.B.’s and Mei-
ssner’s via flux of the magnetic field B; Larmor of course has likened in
such a context ω and B.
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2. INTRODUCTION

De Broglie,(1) in his history making work proposing the matter wave
concept, expresses an electron wave’s 4-frequency (i, j, k, l = 1, 2, 3, 4; x4 =
ict; UiU

i = −c2) as the sum of a mechanical plus a potential contribution

ki = �
−1(m◦Ui − eAi). (1)

The A.B.(2) effect is thus postulated in both its electric and magnetic
forms; so one wonders why 25 years elapsed between the two events!

The magnetic A.B. effect displays a physical influence of a curl less
vector potential. But, as the closed linear integral � = ∫

A dI express-
ing the trapped flux equals the surface integral � = ∫∫

B ds, the opinion
prevails that “it is the magnetic field B which, acting at a distance, causes
the phase shift”—a very metaphysical statement! But if one thinks realisti-
cally of A as acting along the space–time trajectory one is lead, as Henne-
berger(3) among others has argued, to view A as a physical magnitude, its
gauge being selected as an integration condition. This I have argued in pre-
vious works,(4–6) as the fields (E, B) are related to the potentials (V , A) as
forces are related to energies or moments. For example, an atomic mass
defect is expressible in terms of the Coulomb potential. Similarly, momen-
tum balance selects the magnetic gauge, as Konopinski(7) and others have
argued.

So let us ponder the matter by revisiting the A.B. effect.

3. MÖLLENSTAEDT-BAYH’S TEST OF THE A.B. EFFECT

In Möllenstaedt’s-Bayh’s(8) device a solenoid of controllable flux � is
inserted between beams issuing from an electronic biprism. I argue that,
as the fringes pattern can be translated at will by varying �, something
significant has been overlooked.

The A.B. effect consists in that, at a given point on the photograph,
the phase shift �ϕ is proportional to the trapped flux � according to the
gauge invariant formula

�ϕ = −�
−1e�; (2)

All right. But given �, according to de Broglie’s formula (1), under the inte-
gration condition

A ≡ 0 iff � = 0 (3)
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the differential of the phase ϕ as a function of r along the fringes pattern
displays (beware ! one factor −e per beam!) the semi quantum flux h/2e via

�dϕ = (m�v − 2eA) · dI , (4)

the collinear vectors m�v and −2eA being contained in the picture’s plane;
the vector potential A is thus measured, being expressed in the source adher-
ing gauge.

It then follows that A exerts at any point in space a local effect,
upstream no less than downstream. This Tonomura(9) emphasizes p. 100 of
his interesting book: see Fig. 80 and its legend.

So, if the long solenoid were placed inside the interference pattern of a
biprism, with the recording film just ahead and in direct contact with it, the
pattern would be modified according to formula (4); this is a feasible test.

But a proof of this sort can already be found in Tonomura’s (9–11) exper-
iments.

4. TONOMURA’S HOLOGRAPHIC TESTS USING A TOROIDAL
MAGNET

Tonomura superposes two beams issuing from a biprism, one shot
through a small toroidal magnet, one bypassing it at a distance.

This generates a hologram, the picture looking exactly as if the toroid
were immersed in the fringes. The “pictured ring” separates external and
internal straight fringes of interfringe m�v mutually shifted by −2eA, con-
nected by wavy fringes of Eq. (4) with m�v constant and −2eA radial; these
are ellipses with a focus at the ring’s center.

So the hologram looks exactly like a photograph printed on a film
placed in contact with the magnet’s front face, displaying the vector potential
A tangent to the magnet’s front face.

Varying the flux � shifts the internal fringes, not the external ones
which are the same as in absence of the magnet, because “how could
a small toroidal magnet exert an influence at infinity?” The displayed
ratio −2eA/m�v yields a measurement of the vector potential A as a
function of �, independent of �v.

This remains true in the limit �v = 0. A Tonomura photograph
obtained via electron interference microscopy shows circular fringes, the
phase of wich displays the potential space frequency via the equation
�ϕ = −e

∫
A dr yielding a measurement of A as tangent to the magnet’s

front face. This open line integral yields half the A.B. effect; but adding a
similar one in the plane touching the magnet’s rear face restores the full
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A.B. effect. The factor 2 thus stepping in produces the semi flux quantum
h/2e.

That the vector potential does exert a local physical action is evi-
denced in cases where the number of trapped semi-fluxons is odd, and
the magnet’s inner radius is smaller than the interfringe: the “ring’s inside
being then black” all electrons are forced to bypass the magnet by virtue of
the Born–Jordan probability rules. This is a c−2 group velocity effect dis-
tinct from the phase velocity A.B. effect which is discussed in the following
paper.

In this series of Tonomura tests the flux � being not strictly trapped
was not quantized.

5. FLUX QUANTIZATION IN AUTISTIC MAGNETS

Let be termed(12) autistic a magnet completely trapping its flux, as does
an infinitely long straight magnet or a toroidal one. I argued, via resonance of
the evanescent electronic wave surrounding the magnet, that its trapped flux
� is quantized in h/e units, “this rendering the A.B. effect unobservable”. But
later, in association with Vigoureux,(13) we found that in the case of a cylindri-
cal magnet the integer and half integer Bessel functions entail existence of two
intercalated flux ladders, whence flux quantization in h/2e units.

To get a truly autistic magnet Tonomura(10,11) resorted to supercon-
duction, this bringing in Cooper pairs and the Meissner effect; his toroi-
dal magnet was coated with a superconducting layer. Then, � being truly
quantized in h/2e units, the A.B. effect is evidenced by contrasting the
cases of even or odd numbers of trapped semi-fluxons h/2e: the fringes
inside the ring are either the same or opposite to the outside ones, accord-
ing as the number of trapped semi-fluxons is even or odd.

As each h/2e quantum added or substracted in � translates the inside
fringes by half an interfringe, one sees by likening the A.B. closed contour
to two open ones, one before one after the magnet, “the semi-fluxon work-
ing again its miracle”.

In this Tonomura series of tests no wavy fringes appear on the ring’s
surface. This may be due to the fact that the magnet’s coated front face
was not a smooth plane.

6. FLUX QUANTIZATION VIA GEOMETRY

Idealizing the “autistic magnet” as a closed (not necessarily circular)
filament carrying per line element dI ≡ d1r a magnetic moment � dI , we
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express the source adhering vector potential created at x2 ≡ x1 + r as

A(r) = �

∫
r−3r−dI . (5)

Then, � denoting the solid angle through which the magnet is seen from
x2, the magnetic potential action of a flying electron comes out as

−e

∫
A d2r = −e�

∫ ∫
r−3r [d1r × d2r] = −e���. (6)

If the observation point x2 is displaced along a closed circuit embracing
the magnet the solid angle � varies by multiples of 4π and the action by
multiples of h. Again, the magnetic flux quantum comes out as h/2e.

If the observation point is displaced from minus to plus infinity along
a straight line through the magnet � varies by plus or minus 4π ; but
it does not change any more if the contour is closed outside the mag-
net. This confirms that in Tonomura’s pictures the external fringes are the
same as in absence of the magnet.

So, the longitudinal phase shift �ϕ at the magnet’s center is caused
by the magnetic action integral −e

∫
A dI along the central ray. The trans-

verse interfringe shift is due to the transverse mechanical action integral
m

∫
�v · dI .
Finally, the sacrosanct � dependence is recovered at the picture’s cen-

ter, thanks again to the factor 2 in − 2eA. Each of the radial contour inte-
grals

∫
(m�v − 2eA) · dI “across the ring” yields the canonical A.B. closed

contour shift.

7. MEISSNER EFFECT AND AMPERE’S STRESS TENSION

Consider(4) two interlaced filaments, the one a superconducting wire
of line element dI c carrying Cooper pairs with the intensity Ic ≡ −2νe,
the other an autistic magnet of line element dIm trapping a flux �m = −
nmh/2e. Denoting by n the algebraic number of twists, we express the sys-
tem’s quantized mutual energy as

W = Ic�m

∫ ∫
r−3r[dI c×dIm] = nnmhν. (7)

The Meissner effect consists in that the total flux embraced by the
current is zero : �m + �c = 0: the sum of the mutual energy W and the
current’s self energy is zero. As Tonomura(9) puts it p. 133 gauge symmetry
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is broken in superconductivity. Both vectors A and v are curlless, and the
supercurrent flows at the wire’s surface with a velocity v = −e/mA; so A
comes out as expressed in the source adhering gauge.

It is noteworthy(14) that the current’s self energy equals the flowing
electrons’ kinetic energy, as is seen via I ≡ −2νe and

ν mv · dv = −eA· dl. (8)

So the running electrons’ centrifugal force causes along the wire a
stress tension

T ≡ IA. (9)

8. MACROSCOPIC AMPERE TENSION AND VASCHY’S PARADOX

The “Ampère tension” of expression (9) is easily shown(15) to be inte-
grally equivalent to the Weber action–reaction force between two current
elements

d2F = I1I2r
−2r(dI 1 ·dI 2). (10)

This, contrary to a prevailing(16) feeling, contradicts not the Laplace or
Grassmann transverse force concept. Consider(4) the small area inside the
contour generated by a local deformation of the circuit between two
nearby points P and Q. The virtual work of the Grassmann force is
dW = I

∫
A·dI = I

∫ ∫
B ·ds, Q.E.D.

Ever since the historical Ampère-La Rive experiment quite a few
other ones have aimed at testing a local repulsive stress tension appearing
if a circuit is cut. Among these Saumont’s(17) is especially clear and per-
suasive: L denoting the dimensionless self-induction factor, T ’s expression
comes out as T = LI 2 emu.

It so happens that a 1890 Treatise by Vaschy(18) contains the surpris-
ing statement that “no mutual energy exists between a circuit and a per-
manent magnet”; do not a circuit and a magnet interact? Vaschy argued
from the fact that no e.m.f. appears when a circuit’s intensity is varied in
presence of a permanent magnet. But what this proves(14) is that the sum
of the electromagnetic mutual energy plus a mechanical constraining energy
is zero. What is this energy, “that’s the question”.

Read on the formula the answer is: the Ampère–tension potential energy
IA·dl per line element—this confirming the previous interpretation of the
Meissner effect.
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In 1914 Blondel(19), using an ad hoc device, claimed he had vindi-
cated Vaschy’s statement; in his setup a pulley rolled in or out a current
carrying wire in presence of a permanent magnet; no positive or negative
e.m.f. showed up. But this device is a “generator-or-motor” of the Barlow,
Gramme, unipolar rotor family. Had Blondel measured the torque on his
rotating pulley he would have retrieved the missing energy—and evidenced
the Ampère stress tension T = IA.

9. WEBER’S ACTION AT A DISTANCE BETWEEN CURRENT
ELEMENTS AND RELATIVISTIC COVARIANCE

Please think of this. Two conduction electrons distant by r in a
straight wire feel the repulsive Coulomb force expressed in their rest frame
as r−2◦ e2, plus a velocity dependent repulsive force due to the Lorentz trans-
form to the conductor’s frame. As the mutual force between the two elec-
trons thus is r−2e2(1+β2) the expression (10) of the repulsive Weber force
along a straight conductor can be derived.

But what in the general case? An isomorphism exists(20) between the
three-dimensional magnetostatics of conducting filaments and the four-
dimensional Wheeler–Feynman(21) electrodynamics of point charges; it
stems from the correspondence recipe between Weber’s mutual energy and
Wheeler–Feynman’s mutual action

r−1II ′dI ·dI ′−δ(r2)ee′dxi dx′
i; (11)

Wheeler–Feynman’s far action electrodynamics transposes Weber’s mag-
netostatics of currents. Both are integrally equivalent to the conventional
ones using the transverse Grassmann or Lorentz force.

10. CONCLUDING REMARKS

The ideas upheld here conform to those previously worded(4–6) “elec-
tromagnetic gauge as an integration condition”. The argument was that the
relation between fields and potentials parallels that between forces and
moments or energies, which relation is an integration. Louis de Broglie(22)

very often argued along such lines.
As my good friend Franco Selleri has recently played in physics the

time honoured game of carefully wording bold testable hypotheses, all
right, I follow his example.
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8. W. Möllenstaedt and W. Bayh, Naturwiss. 49, 81 (1962).
9. A. Tonomura, The Quantum World Unveiled by Electronic Waves (World Scientific, Sin-

gapore, 1998), pp. 107–113 and end of p. 133.
10. A. Tonomura et alii, Phys. Rev. Lett. 48, 1443 (1982); Phys. Rev. Lett. 51, 331 (1983).
11. A. Tonomura et alii, Phys. Rev. Lett. 56, 792 (1986).
12. O. Costa de Beauregard, Phys. Lett. A 41, 299 (1972).
13. O. Costa de Beauregard and J. M. Vigoureux, Phys. Rev. D 9, 1626 (1974).
14. O. Costa de Beauregard, Ann. Fond. L. de Broglie 28, 77 (2003).
15. O. Costa de Beauregard, Phys. Lett. A 183, 41 (1993).
16. A. E. Robson and J. D. Sethian, Am. J. Phys. 60, 1111 (1992).
17. R. Saumont, ref 4, p. 620; see references therein.
18. A. Vaschy, Trait’e d’Electricit’e et de Magn’etisme (Baudry, Paris, 1890).
19. A. Blondel, C. R. Ac. Sci. 59, 674 and 728 (1914).
20. O. Costa de Beauregard, Time, The Physical Magnitude (Reidel, Dordrecht, 1987),

p. 89.
21. J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425 (1949).
22. L. de Broglie, C. R. Ac. Sci. 225, 163 (1947).


