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CAN INFORMATION THEORY RECEIVE
A RELATIVISTIC EXPRESSION?

O. Costa de Beauregard

Bergson recounts somewhere that, having once been asked what to-morrow’s novel would
look like, he answered that he did not know, for, had he known, this would imply that he
had written the novel.

Well, up to now, only this title of the novel exists. Notwithstanding Bergson's serious war-
ning let us try to outline what it should like.

Speaking of relativity theory implies at once that the time concept is taken in a strongly
physical sense, and not in some remotely abstract fashion as may be the case in an academic
version of probability theory or information theory. We will be dealing with some manifestly
covariant form of statistical mechanies,

It s0 happens that Jaynes [1] partly inspired, as it seems [2], by Cox [3], produced a self-
contained general formalism of statistical mechanics, vielding an extremely concise and
transparent deduction of all the essentials. Later Tribus [4] published clegant presentations
of this doctrine and Katz [5] has developed it in the form of a treatise.

Jaynes® prescription for obtaining the significant probability distribution is derived straight
from information theory and reads: Maximize the entropy

= —Zplnp, (1)
subject to
and whatever contraints result from the physical situation. For instance, in classical statistical

mechanics, the mean value <E3 of the encrgy E. and the mean values {n,» of the numbers
of different chemical molecules m, are given, whence

ZpE; = (B3, (3)
E pi"mi - {ﬂm} {4}

gtc... Then the well known technique of Langrange multipliers yields, through the definition
of the partition function
U e (5
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the following expressions for the entropy, the mean energy, the mean concentrations, ete. ..

S=n+f<E + Y8, {n), (6)
(E> = —ornlap. (7
Ny = —infdf,. (8)

Of course, the prescription and the formulas are nothing more than what is found in every
classical exposition of equilibrium statistical mechanics. What is new is that the line of reasoning
is reduced to its bare skeleton, plus the motive muscles enabling it to be applied directly for
solving any problem within its potential field. The huge obesity of classical statistical mecha-
nics—that s, the extensive considerations on ensembles and so on—is completely gone, much
obscurity in applications or extentions has also disappeared, and much clarity has been gained.

As for relativistic covariance there is & priori “‘no problem”. The exponent in formula (5)
must be a scalar. Therelore, if we insert instead of the energy E the energy-momentum 4-vector
E* with 2 = 1, 2, 3, 4, the “inverse temperature” f inside the scalar product f,E* will show
up as a 4-vector fi;. If we need to introduce the six-component angular momentum EU,
a corresponding skew-symmetric inverse temperature Brag will come in. As for the s, they
will of course remain scalars, etc...

Therefore, the relativistic covariance should not bring in per se any serious problem.

In a physically significant information theory, we also need a covariant formalism for
information transfer. At this end wave propagation is ideally suited. Moreover, as we should
not be restricted to electromagnetic waves, it is only natural to turn towards wave mechanics,
that is, gquantum mechanics.

So the question naturally arises: can we find, in the quantum mechanical formalism, an
acceptable definition of entropy *“corresponding” to the classical one? The answer is known
to be yes — through J. von Neumann's definition [6] of the “density matrix” P and his
“ensemble” presentation of quantum mechanics. The entropy is then defined as

8 = —Trace (FPln P). (2)

It so happens that in an important, but rarely quoted article of 1937, Elsasser [7] inspired
by Fisher [8] has applied, inside the von Neumann scheme, the very prescription later used
by Jaynes, in order to produce a consistent theory of the guantum mechanical measuring
process. In Elsasser’s words [7, p. 992] this was an information theory approach. He also
states that, in his line of thought, the density matrix should be used for describing not only
ensembles, but even individual systems.

So one more of the things we are needing is already there: an anticipated sketch of the
use of Jaynes' formalism inside the scheme of J. von Neumann’s quantum mechanical den-
sity matrices plus an explicit application of it by Jaynes himself.

The next thing we need is a relativistically covariant formalism for the scalar product, the
normalization and orthogonality formulas, the reciprocal Fourier transforms, all of which are
the everyday bread of quantum mechanics, and thus the basis for constructing, in any specific
case, the von Neumann density matrix.
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Of course, since the celebrated works of Tomonaga [9], Schwinger [10], Feynman [11]
and Dyson [12], everybody knows that a beautiful formalism exists for relativistic quantum
electrodynamics, and some other specifications of quantum field theory. What we need for
our purpose is something more down to earth: it is a relativistically covariant presentation of
the “first” rather than of the “second quantized” mechanics.

It so happens that this very problem has been with me for many years, and that, after
writing a few articles on it [13], T have expanded the whole subject in a booklet [14]. Wightman
and Schweber [15] have also considered the problem.

S0 what seems to be the last necessary piece of our puzzle is also there: an explicitly covariant
formulation of “first quantization”, including a theory of Green’s functions or “propagators”,
and a resolution of the Cauchy problem in the form of the expansion of a wave function on a
complete set of erthogonal propagators.

So then what remains to be done? At this point one should remember Bergson’s warning:
building up an operational physical theory is not rattling on or waving hands. That is, building
up 4 theory is mever merely putting together pieces of a puzzle; one can never avoid using sand-
paper —to say the least. Therefore it is only when building up the whole scheme that one will dis-
cover what it truly looks like — and almost certainly one will discover unexpected implications.

But man’s mind is thus made that he cannot help trying to guess what unexpected things he
should expect. In my opinion, there is one information transfer problem in space-time that
is a real big one: the one pertaining to the so-called Einstein-Podolsky-Rosen [16] paradox,
also considered by Schrédinger [17] and by Furry [18]. As I have already expressed [19] my
fieelings in this respect I will not do it again here. I will simply draw attention to a very interest-
ing recent paper by Moldauver [20] entitled “Is there a quantum mechanical measurement
problem 77, the implication being that there is mone. The case is made very strongly, and
formulas for conditional probability are given, Therefore the paper is important to us.

However, notwithstanding Moldauer’s dazzling exorcism of ghosts, 1 believe that the
problem of information gain (knowledge), of information use (action), and of information
transfer by means of waves still contains, in quantum mechanics, an unsolved mystery.

The point is clearly made by Hooker [21] and, in my epinion, brings us straight back to
London and Bauer’s [22] philosophy. In the Einstein-Podolsky-Rosen “paradox™ the problem
is neither prediction, nor even retrodiction, but truly telediction, along a spacelike separation
built up from two timelike separations making a sort of Feynman zigzag [19]. It is not relev-
ant for observer 4 to think of the other distant observer B as going to perform, or having
already performed, his measurement when A is performing his own one, because this order
in time is a relative and not an ahsolute one.

The emphasis here is on time symmetry of elementary processes. This calls for full consider-
ation of the intrinsic symmetries between statistical prediction and retrodiction, retarded and
advanced waves, information as knowledge and as volition, as discussed by quite a few
authors [23].

To conclude, 1 do hope that a student of mine will show up and be ready to tackle these
intertwined problems, because [ eertainly would like to look over his shoulder while the work
is going on.
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Also, I should like to say that the names I have cited in my paper are certainly not the only
ones that could have been quoted. The approach to probability problems and to statistical
mechanics, either classical or quantal, has truly been, either explicitly or implicitly, “in the air™
for all these past vears.
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