


quantity in systems. This question, which is essentially the same one as explaining how the
subjective probability comes out as objective frequency, is by no means a trivial one, as un-
sophisticated commonsense would have it; this point has been strongly felt by Popper® and
by Landé.'®

The transition from subjective to objective probabilities occurs, loosely speaking, when one
goes from small to large numbers; in physics, the entropy concept as used by Smoluchowski,*

Szilard,'* Lewis,’® in problems involving very few molecules at a time is clearly “missing

information™; measurable, objective entropy emerges only on the macroscopic level. Similarly,
in quantum mechanics, where the wave function is a probability computing device, this
has a pronounced subjectivistic flavour in problems involving few quantum transitions; the
famous “wave collapse” occurring there obviously corresponds to the information transition
appearing in every stochastic test, such as turning a card or throwing a dice; only on the macro-
scopic level does the wave function recover its pure objectivistic signification, as exemplified
for instance in photon or electron diffraction patterns.’* But these statements which are in
line with remarks by early authors on probability and frequency, do not tell us iow the transit-
ion from subjectivity to objectivity occurs. The technical answer is, of course, that the expecta~
tion value of the frequency is precisely the probability;'® but, by pointing out that after all
the probability is not the frequency (only its expected value), this straightforward application
of first principles stresses that to step outside the enchanted circle of subjective probabilities
is by no means a triviality.

At this point Jaynes® adduces a remark much in the spirit of earlier ones by Poincaré'®
plus an explicit postulate: *The theory makes definite predictions as to experimental behaviour
only when, and to the extent that, it leads to sharp distributions ... Such sharp distributions for
macroscopic quantities can emerge only if it is true that for each of the overwhelming majority
of those states to which appreciable weight is assigned we would have the same macroscopic
behaviour ... It is this principle of ‘macroscopic uniformity’ which provides the objective
content of the calculations, not the probabilities per se. Because of it, the predictions of the
theory are to a large extent independent of the probability distributions over the microstates.”

Interesting as it is this remark (and this form of the necessary postulate) does not settle the
matter, because in fact statistical physical theories are operational even when low numbers
are at stake, thus producing a direct verification of the a priori probability distribution with
very little uncertainty; this is true, for instance, in the Wilson-Taylor or Dempster-Batho
photon experiments. The argument that this situation is similar to the one in dice or coin-
throwing games, thus implying that after all large numbers and “hidden parameters™ are at
stake, would not in the least solve the problem, but rather “sweep it under the rug”.2-'°

“Consider now the case where the theory makes definite predictions and they are not borne
out by experiment. This situation cannot be explained away by concluding that the initial
information was not sufficient ... The most reasonable conclusion is that the enumeration
of the different possible states (i. e., the part of the theory which involves our knowledge
of the laws of physics) was not correctly given. Thus, experimental proof that a definite pre-
diction is incorrect gives evidence of the existence of new laws in physics. The failures of classical
statistical mechanics, and their resolution by the quantum theory, provide several examples
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of this phenomenon.” This pre-eminent statement was made by E. T. Jaynes.? But this state-
ment is essentially as old as the probability theory, for it says (1) That the a priori probability
distribution must conform to the principle of sufficient reason, and (2) That the observed
frequencies must reproduce the calculated probabilities. So the umbilical chord is not yet
cut...

The problem which is at stake is the very one underlying all information theory and, before
it, the whole of science; that is, the problem of the operational conformity of stazements with
facts, or of representations with situations.”” Such a problem is radically avoided by the ob-
jectivistic school of probability theory, but it exists nevertheless. Generally speaking, it is
the problem of the correspondence of mental images with physical states, or in some sense
their emergence from physical states. And it is my feeling that information theory, together
with statistical physics, has much to say in the future with regard to the solution of this very
important problem.

II. Physical Irreversibility: the Link Between the Carnot Principle
and the Retarded Waves Principle

I shall now summarize the more detailed examination of this question which may be found
elsewhere, and show the connection between the entropy increase principle and the retarded
waves principle by rewording the famous von Neumann'® proof referring to irreversibility
in the quantum-mechanical measuring process.

Already in phenomenological thermodynamics it is clear that irreversibility is not deduced,
but rather postulated in the very form of Carnot’s assumptions:

(1) When two heat baths are interconnected, the heat flows from the high temperature to
the low temperature one (not the opposite way); (2) A monothermic cycle may transform
work into heat (not the opposite way).

Very interesting epistemological questions are raised when one tries to reverse the two
Carnot assumptions; it turns out that consistent reasoning in the “anti-Carnot” thermodyna-
mics is extremely subtle, because, as Poincaré'® has shown, the anti-Carnot assumptions are
of an anti-causal nature and do not allow physical prediction (only physical retrodiction).
These remarks of Poincaré definitely suggest a very close connection between the Carnot
principle and the principle of causality — a connection which has been demonstrated in many
different ways by various authors in the recent years.

In Caratheodory’s*® axiomatic presentation of phenomenological thermodynamics, irrever-
sibility is introduced by remarking that adiabatic expansion of a gas implies an entropy
increase; but then one must ask why an adiabatic expansion rather than contraction is the
natural way things go; this is definitely a Popper®!-like question, and also a statistical argument
in disguised from; we shall come back to this later.

Before we turn to the statistical mechanics interpretation of Carnot’s principle we must in-
quire where a time?? anisotropy®? occurs in abstract probability theory. Suppose a pack of
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cards is found “in order”: spades, diamonds, clubs, hearts, in four sequels from ace to king
(or in any sequence belonging to a specified low populated sub-ensemble). The fact is that,
while in predictive problems pertaining to card shuffling, the ordinary combinatorial laws of
the probability theory will do very well, they will in fact fail in retrodiction: nobody will easily
believe that an ordered pack of cards has been obtained by mere shuffling! The situation is
very much the same in physical problems: sandheaps get swept away and nebular gases gather
to build up stars, that is, in a given context, more probable situations follow from less prob-
able ones, not the other way.

The technical means for handling this time dissymmetric situation is provided by a temporal
application of Bayes’ formula (which is, formally, a combination of the additivity of partial
probabilities and the multiplicativity of independent probabilities): in retrodictive problems
unphysical conclusions would be reached if one did not multiply the intrinsic probabilitics
of the dynamical problem by extrinsic a priori probabilities — the so-called Bayes coefficients,
of which the theory says nothing, except that they must not be equal, because, then, the retro-
dictive problem would become time-symmetric to the predictive one, and thus belong to the
body of laws of the paradoxical anti-Carnot world.

Very characteristically, the retrodictive application of Bayes” formula has often been called
the “principle of probability of causes™,>* this showing that the connection of what may be
called the “Bayes’ principle” with the principle of causality was intuitively felt by the
classic scientists. As for the interpretation of the Bayes’ coefficients, it will become clear in the
following that they are expressing the interaction out of which the stochastic system under
study has been generated; but of course the question is thus raised of why an interaction
limited in time produces, in each subsystem, after-effects and not *before-effects™.

- Turning now towards the statistical interpretation of Carnot’s principle, either in the form
of mechanical models (Clausius, Maxwell, Boltzmann, Gibbs and their followers), or in the
formalistic, abstract?® and concise form available in “thermostatics”,*?** it is immediately
clear that the statistical interpetation of Carnot’s principle is merely a specification of the
above stated Bayes® principle; this was first stated clearly by Van der Waals®® and is also
implicit in 2 much-quoted passage by Gibbs;*” an analogous though less technical statement
is found in the writings of Mehlberg,?® Griinbaum,* and many others, in the form that
physical irreversibility is definitely of a *fact-like rather than law-like™ character; that is,
that it is expressed as a boundary condition rather than as a dynamical law.

Perhaps a typical example will help to make this point clear. Poincaré,?” discussing the
problem of the uniform distribution of the little planets on their common orbit, simplifies it
by taking the orbit to be a circle and replacing the planets by a fictitious gas.** Denoting
the (constant) angular velocity of a molecule, ¢ its initial longitude, ¢ the time, flw, ¢) the
distribution function, Poincaré remarks that the “characteristic function™

) = ﬁ exp ((or + ¢)) flad) da di

goes to zero when f goes to oo, whatever the function f, provided simply that it is continuous
in @. Thus, whatever the initial distribution f(z, ¢), the final one will be uniform. The trouble
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is that a similar conclusion is drawn if { = —2@0, which would certainly be unphysical. There
is no other issue than cutting the Gordian knot, that is stating that the use of Poincaré’s
formula is allowed in prediction and forbidden in retrodiction. This is, of course, a statement
fundamentally similar to the one expressed by the temporal application of Bayes’ principle.
Incidentally, this Bayesian kind of paradox belongs to the same family as the early Loschmidt®*
and Zermelo®® arguments, but it is much more general in that no specific dynamics is implied
in it. Also, it is of course akin to the well-known Ehrenfest®* and Smoluchowski*® consider-
ation pertaining to the temporal isotropy and homogeneity in the evolution of isolated sta-
tistical mechanical systems.

Finally, temporal anisotropy is truly postulated at the very basis of any form of statistical
mechanics, in the form of an initial boundary condition, macroscopic in its nature, and
stating, as Watanabe®® puts it, that blind statistical prediction is allowed and blind statistical
retrodiction forbidden; in other words, it is a specification of the temporal application of
Bayes’ principle.

Now I will show that the latter is also true for the principle of retarded waves.

That some sort of physical connection must exist between the principle of entropy increase
and the principle of retarded waves is obvious in many examples. When a stone is thrown in
a pond, retarded volume and surface waves are generated, and it is through them that the
dissipation of the energy first concentrated in the stone takes place. Also, the slowing down
and consumption of a meteorite entering the earth’s atmosphere occurs through retarded
ballistic waves. Still more specifically, if, between times #, and 7, a physicist moves & piston
in the wall of a vessel containing a gas in equilibrium, Maxwell’s velocity distribution law is
alterated after time 1,, not before time 1y, that is, the alteration is propagated in the gas as
a retarded rather than advanced wave. Commentaries on the paradoxes of blind retrodiction
and the corresponding anti-causality, in these examples, are left to the reader.

In this context one must recall what has been qualified as “an inconclusive but illuminating
discussion carried on by Ritz and Einstein in 1909, where Ritz treats the limitation to retarded
potentials as one of the foundations of the second law of thermodynamics, while Einstein
believes that the irreversibility of radiation depends exclusively on considerations of probabi-
lity””,3” There is little chance to get at the heart of the problem when speaking of non-quantized
waves — and all the more since all waves in material media are now believed to be quantized.
My personal feeling (which I intend to justify) is that Ritz and Einstein were equally right,
and that the only circumstance preventing them from recognizing that they were looking
at the same thing from two opposite directions was simply that, at the time they wrote, the
undulatory aspect of mechanics was not yet discov: — even if the corpuscular aspect of
light was. Had Ritz and Einstein known, in 1909, that every scattering process, in the sense
of statistical mechanics, is also a scattering of waves, and vice versa, then certainly both of
them would have recognized that their opposite positions were in fact reciprocal, that is,
mutually exchangeable.

The first clear hint of a link between the two principles of entropy increase and (quantized)
waves retardation is found in Planck’s definition®® of the entropy of a monochromatic light
beam: this entropy increases in a scattering process. That scattering as associated with entropy
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increase is of course no surprise. The point is that scattering, or diffusion, is a retarded waves
process. Should advanced waves be used, then a paradoxical phase coherent *‘con-fusion®
instead of *‘dif-fusion’ would occur, and there would correspond to it an entropy decrease.

In Planck’s formula for the entropy of a monochromatic light beam the /4 constant enters;
that is, the quantization of light waves (according to Bose statistics in this case) is essential in
defining an entropy of the light beam. In other words, quantization is essential for stressing the
fink between the Carnot (or Bayes') principle and the principle of retarded waves.

There are of course as many ways for stating such a link as there are ways of handling
probability; I will choose as specially fundamental the one using von Neumann’s'® micro-
entropy*’ in quantum-mechanical systems; the above stated link is made clear simply by
rewording von Neumann’s proof pertaining to irreversibility in the quantum-mechanical
measuring process; and this I will do using, for brevity, a simplified form of the argument.

¥, denoting the projection operators associated with orthonormalized wave functions v,
and

D =.2i:PuTt O=p=1LYp=1)

the density operator, the probability ¢; of finding the pure state ¢, in a future measurement is
q; = trace D&, = (Y| D[y} = Z;,p; < yijelwi .

Introducing the expansion coefficients of ¢, in the W s system, majoring all p’s by their upper
bound P, and using the identity

;C"SCU =1 '
one obtains
q = g CiiCip; S P:

none of the ¢’s expected in a future measurement can be larger than the largest of the initial
p's. This describes a levelling or equalizing procedure typical of the Carnot family.

The point is that the deduction has being carried out as a “blind prediction’” and that retard-
ed solutions of the Schrédinger equation, starting from the initial state, have been implicitly
used. Had a symmetrical “blind retrodiction® been performed, this would have used advanced
solutions of the Schrédinger equation — and would have yielded an entropy decrease. The
one to one connection between the use of retarded (light or matter) waves and application
of the statistical Bayesian postulate “blind retrodiction forbidden” is thus established on a
very fundamental level.

A shorter and more intuitive way for saying the same thing is that, as retarded and advanced
waves are the mathematical devices respectively associated with statistical prediction and retro-
diction in quantum mechanics, the Bayesian principle forbidding blind retrodiction is just
another name for the principle excluding advanced waves on the macroscopic scale.
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III. The Einstein-Podolsky-Rosen Paradox and Information Transfer

The intrinsic time symmetry of prediction and retrodiction problems is fairly obvious in the pro-
bability formalism of the quantum theory: retarded and advanced waves are generated, via
a resolution of the Cauchy problem, respectively towards the future and the past; this, in the
relativistic case, implies the use of the Jordan-Pauli propagator D, that is, of a probability
amplitude yielding symmetric probabilities in prediction and blind retrodiction. It is thus
clear that the physical dissymmetry between prediction and retrodiction is nor intrinsic in the
quantum dynamics; that is, it is of macroscopic nature, and generated through the consider-
ation of ensembles and use of Bayes’ formula, as previously explained.

At first sight the situation scems less clear in the case of transition amplitudes calculated
by Feynman's rules. This is because an explicit time dissymmetry, manifesting itself in higher
order processes,*” is introduced there by the use of the so-called “causal” D¢ Stueckelberg-
Feynman propagator for describing virtual particles; this propagator has a lime symmetric
twin, which may be called the “anti-causal’”” propagator Dj. But a closer examination reveals
the reason for the trouble.

Jauch and Rohrlich*® have explained how the use of the Stueckelberg-Feynman De
describing virtual particles automatically yields (1) the Lamb shift of energy levels in atoms
(2) the exponential decay from higher to lower energy states through emission of retarded
radiation. A similar calculation then shows that use of the anticausal Dy would yield (1) the
Lamb shift (unchanged) and (2) a paradoxical exponential build up of higher energy levels
from lower ones through a paradoxical absorption of advanced radiation, while use of the
time symmetrized D would yield only the Lamb shift and no preference with respect to high
or low energy levels, neither for retarded nor advanced radiation.**

Now, the statistical origin of exponential decay laws is nothing new: it is found in radio-
activity, and, even before, in the theory of chemical reactions. The point is that an exponential
decay follows from blind statistical prediction (while an exponential build-up would follow
from blind statistical retrodiction). So we find once again the association of retarded waves
with blind statistical prediction, and, through the Jauch-Rohrlich demonstration, even some-
thing more: that the description of virtual particles by the time asymmetric D¢ (rather than
the time-symmetric D) has an extrinsic origin: it is in a one 1o one correspondence with the
principle of exclusion of advanced waves, which principle is essentially macroscopic in its nature.

The most striking operational proof of the complete time symmetry in the transmission
of information at the elementary quantum level is certainly provided by the so-called Einstein-
Podolsky-Rosen*? (non-relativistic) paradox, or by its relativistic twin considered by Schrodin-
ger.*> The problem essentially refers to quantum statistics of an elementary transition, and
so we are not dealing with frequencies; that is, we are dealing with the information gained in
a stochastic tesL.

Let us discuss the “paradox’ in the slightly different form considered first by Einstein**
and later by Renninger.** During some time interval At, one single quantum corpuscle goes
through a hole of section As and is later absorbed at a point on some photographic plate;
the a priori impact probabilities are of course calculated, as classical optical intensitics would
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be, using the retarded wave emitted by the hole. The point is that, if an ohserver O, registers
the impact in, say, 4, at time 7T, he is immediately certain that there is no impact of this same
particle at a distant point-instant (A4, T;) separated from (A4,, T,) by a space-like interval;
he knows that another observer O, operating at (4,, T;) cannot observe the particle. Con-
versely, if O; knows that the particle has been emitted, and he has not observed it in {41, T3)
after the necessary time has elapsed, he is certain that an impact of that particle may have
occurred at some other (A,, 7;) point-instant with a space-like separation from his (4,, T}) —
provided of course a receptor was there.

The “paradox™ consists in this “instantaneous’ or “space-like” information transfer; such
prominent thinkers as Einstein, Schrédinger, de Broglie, felt that the only resolution of the
paradox is through some kind of hidden determinism, which would make the statistics purely
subjectivistic. But such a solution would entail other difficulties, such as those discussed by
Landé.” So I believe that the right answer must be more subtle.

Through which channel is information transferred in the hidden variables version? Positive
information (answer yes, or 1; that is, impact) is transferred along the alleged trajectory,
while inferred negative information (answer no, or O; that is, no impact) is also transferred
along a trajectory, but this time an unoccupied one. To solve the paradox we have simply
to retain this scheme, but without making the dubious assumption that probabilities are
purely subjectivistic in an elementary quantum test. So, the space-like information transfer
Sfrom (A4, T) to (4, T;) [or from (A,, T;) to (A, T})] is in effect the combination of two
time-like information transfers along a Feynman zigzag joining, in space-time, (A, T,) and
(Az, T;) with its angle in the past As At (time-like) 3-surface where the hole is open.

In other words, it is my feeling that the various correlation paradoxes of the Einstein and
Schrodinger family (the rechnical solution of which is straightforward through the quantum
formalism) are a direct operational proof of the time symmetry of information inference at the
elementary quantum level. The principle of wave retardation is a macroscopic principle. and
it does not hold at the elementary quantum level, where a time-symmetric wave propagation
principle replaces it. This is obvious in the formalism; that it is also operationally true in the
form of the Einstein and Schrodinger correlation *“paradoxes’ is just one more curiosity in the
realm of quantum mechanics.

In a static situation and in terms of Euclidean 3-dimensional space, nobody finds any
paradox in the fact that if one single ball is found in one definite closed box belonging to a set,
it may not be found in any of the others. The surprise here is that a similarly rigid correlation
of informations exists in Minkowski's space time; and this of course emphasizes, on the quan-
tum level, what Minkowski,*® Weyl,*? Einstein**, Feynman,** and many others, have said
about the epistemological status of the realistic space-time; it is, according to them, very
similar to the one of the former Euclidean space: neither less nor more realistic. The surprise
here is that the proof comes in the form of a correlation of informations; this may well be
inherent to the fact that, with quantum mechanics, we are experimenting with statistics on
truly elementary physical phenomena.
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1V. Bayes’ Principle and Causality Principle

Let us make it clear now that probability or entropy increasing®® evolutions conform to the
principle of causality, while paradoxical probability decreasing evolutions would conform
to the time reversed principle of finality. This is obvious in terms of waves, because the
former are described by retarded waves and the latter by advanced waves. So let us make
the point also in terms of probabilities.

Poincaré'? remarks, as Griinbaum®! puts it, that, in an anti-Carnot world, it would be dan-
gerous to get into a lukewarm bathtub, because one could not foretell which end is going to
boil and which to freeze. It would also be dangerous to bowl, if friction were an accelerating
rather than damping process. This is because a Carnot world is such that blind statistical
prediction is possible in it, while an anti-Carnot world would be one in which blind statistical
retrodiction would work. Also, in an anti-Carnot world, converging waves would build up
in quiet ponds, concentrate upon a stone, and precisely throw it into the hand of a passer-by.
Or shuffling cards would produce at will an ordered pack. That is, improbable situations
would come out of probable ones.

It is thus clear that the temporal application of Bayes’ principle, which exciudes blind retro-
diction, is the statistical expression of both Carnot’s principle, and of the principle saying
that interactions limited in time develop after-effects and not before-effects. It should incident-
ally be noted that such interactions, though certainly increasing the entropy of the total
system, may very well decrease at first the entropy of one subsystem. If, for instance, (Schlick’s
example) one see¢s footprints on a sandbeach, one concludes that a man has passed by, and
not that a man will step in the footprints and thus erase them. In fact, all registering apparatus
are of that kind, that is, subsystems which. before coupling, are in a high entropy state; a
formalizafion of the process is given by J. M. Oudin.**

A thorough investigation of these coupling and decoupling processes is found in Reichen-
bach’s** and Griinbaum's*® works under the name of “theory of branch systems™. The idea
that Carnot’s principle and the physical causality principle are in fact the same one under
two different names, besides having been strongly emphasized by Reichenbach, Griinbaum,
and myself,! is also more or less implied in the writings of such physicists as Watanabe,*®
E. N. Adams,** J. Mc Lennan,®® Wu and Rivier,®” Penrose and Percival;*® it is explicit in
a paper by Terletsky.*®

An interesting question is that of the relation between the (subjective) principle of sufﬁcxent
reason and the (objective) principle of causality. The classical answer would perhaps be that
the former is merely the subjectivistic duplication of the latter. Nevertheless, the preceding
analyses have shown, as Jaynes® puts it, that the two concepts of subjective and objective
probability refuse to be united; so the expression of the connexion between the two principles
of sufficient reason and of causality will require more subtlety.

Before tackling this point, [ wish to show how easily the postulate of a one way time arrow
creeps in when one makes use of either the principle of sufficient reason or the principle of
causality. E. Borel, in his book Le Hasard,*® adopts the objectivistic or frequency theory of
probabilities, and writes: “A coin is thrown and bets are laid as to which side will show up
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when it has fallen. This is the simplest of probability problems, if one adds the hypothesis
that chances are equal for heads and tails. Regarding the equality of chances, we won’t get
involved in any philosophival discussion, and will merely take it as an experimental fact, or,
if you like, as the very definition that the coin is good ...”". On the other hand P. Lévy, in his
Calcu! des Probabilités®* is an avowed proponent of the subjective probability concept;
regarding this very same heads or tails game, he writes: “When two possible cases are equally
probable, that is, when we have no reason to expect the one more than the other, we are
ipso facto expecting that, if the test is carried out a sufficiently large number of times, the two
cases will show up with almost the same frequency.”

The point 1 wanted to make is that, in both arguments, the principle of probability increase
by testing — that is, the temporal application of Bayes' formula — has been postulated.

V. Information and Entropy: Brillouin’s “Generalized Carnot Principle™

It will be especially interesting to apply the general conclusion reached in recent years by many
authors — that statistical irreversibility is of a fact-like rather than law-like character — to
the two way transition

negentropy = information

discovered by cybernetics.

In this context a preliminary question will be: is it true, as G. N. Lewis,'® S. Watanabe®®
and H. Mehlberg®® would have it, that physical evolutions are completely time symmetrical,
and that “*Gain in entropy always means loss of information and nothing else? Is it a subjective
concept?*'? This reviewer feels that it would be difficult to go so far,and that there is certainly
something objective in the fact that sandheaps get swept away or that nebular gases gather
to build up stars. That the sun radiates would remain true even if no carthly physicists were
there to observe the phenomenon and develop its thermodynamics. But, on the other hand,
such observations and the corresponding theories may help to devise procedures and build
devices to partly recapture the dissipated energy: so there is after all something true in Lewis’,
Watanabe's and Mehlberg’s views — and this is precisely the concern of cybernetics.

In the present context, the fundamental discovery of cybernetics is,°* as Gabor puts it,
that “one cannot get anything for nothing, not even an observation”. He, and Brillouin,**
have given very interesting examples showing that the information A7 gained in any physical
measurement must be paid for by an (at least) equal loss of the surrounding negentropy®*
AN 1

AN, = AI;

or, if information is measured in natural binary units and entropy in practical thermodynamic
units,
AN, = kin2A7

20




where k denotes Boltzmann's constant. This immediately places every physicist, and even
every layman, very much in the situation of a gambler. That this general law of Nature had
escaped recognition for so long is of course due to the smallness of the Boltzmann’s constant
in practical units; and this occurrence reminds one of those of the quantum and relativity
discoveries, where the universal constants h and |/c are also very small when expressed in
practical units.

Now, the second fundamental discovery of cybernetics is that the possession of a certain
amount of information allows its owner to restore an (at most) equal amount AN, of (coarse
grained) negentropy in the surroundings:

Al = AN, .

For instance Maxwell's demon, being well informed on the microstate of affairs, is able to
convert the corresponding high value of the fine grained negentropy into a coarse grained one.
So, cybernetics take the acting transition

information — negentropy
as the reciprocal of the learning transition
negentropy ~» information .

On the subjectivistic side, cognizance awareness (where the representation follows in time
the physical situation) is present in the latter case, and willing awareness (where the represen-
tation precedes in time the situation) in the former one. And it certainly is a good thing that
cybernetics seems at first sight able to take care of human work and labour, and not only of
speculation and contemplation. Also, it may be noted that cybernetics has rediscovered,
without having searched for it, the connection between the two senses of the old Aristotelian
information concept: gain of knowledge and planning power (the second of which had almost
been forgotten).

It thus seems plausible that cognizance awareness and willing awareness should respectively
emerge in regressing and growing up fluctuations. Now, according to Brillouin and others,
the “generalized Carnot principle’ is written as

AN, = Al = AN,

(the original one being simply

AN, = AN,);
and of course the kind of irreversibility expressed in the new form of the principle must re-
main, as in the old one, *“of a fact-like rather than law-like character”’. Thus, that information
gained in a learning transition is smaller than the negentropy from which it is borrowed and

larger than the one it could restore in a willing transition, expresses a de facto situation of
ours where observation is easier than action; in the two way transition

negentropy = information
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the upper arrow is easier to follow than the lower one. Remembering what was said above
, of the connection of retarded actions with decreasing entropy, this amounts to saying that
l causality is largely predominant over finality — a statement which is of statistical rather
» than absolute character, because of course there are fuctuations, some of them large and long
‘ Jasting; this was pointed out by Schribdinger®® in the case of living things.

Incidentally, such a fact-like situation contains @ possible explanation of Boltzmann's®®
idea that life is bound to explore the entropy curve in the time direction where entropy is
growing: if one postulates (which seems inevitable: one cannot “anti-read”’ a book from the
last to the first sentence, thus erasing one’s previous knowledge in the field) that life cssentially
implies an incoming information flux, then this A7 > 0 requires that the time axis is followed
in the direction so that AS > 0, as Boltzmann had postulated.

1t is my personal feeling that the de facto smallness of Boltzmann’s constant k in practical
units is in relation with the above stated existential situation (just as the largeness of the ¢
constant in practical units may well be a reflection of the low value of our nervous influx,
which relates for us small length intervals to large time intervals). Due to the smallness of
k, to gain information is very cheap in negentropy terms, while to produce negentropy costs
very much in information terms; going to the pre-cybernetical limit k — 0 would render
observation costless and action impossible, a version of “epiphenomenal consciousness”
which is no longer tenable. In a similar vein, the reason why the causality concept is so ob-
vious to observational awareness while the finality concept is so obvious to willing awareness

/ seems to me very clear: itis because, by their very nature, observation and action are respectively
connected with entropy increasing and entropy decreasing processes, that is also, according,
to the preceding analyses, with retarded and advanced actions.

V1. Brief Conclusion

As one should not say too many things in one single paper I had to leave out many topics
such as the consideration of the Wheeler-Feynman semi-classical radiation theory, morc
developments on the Reichenbach-Griinbaum theory of branch systems, and the connection
which may very well exist between cosmological and statistical irreversibility (Sciama and
others).

On the whole, 1 have the fecling that the already long history of probability, irreversibility,
information in general, information in quantum theory, is very far from finished, and that in
the future we may learn much from it concerning the way knowing and willing awareness
(of men and of animals) are connected with the mechanics of the universe. In his well-known
book, Brillouin®? writes: **Relativity theory seemed, at the beginning, to yield only very small
corrections to classical mechanics. New applications to nuclear energy now prove the funda-
mental importance of the mass-energy relation. We may also hope that the entropy-information
connection will, sooner or later, come into the foreground, and that we will discover where
to use it to its full value™.
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