PHYSICAL NON-REALITY OF ELECTROMAGNETIC POTENTIALS?

O. COSTA DE BEAUREGARD

Institut Henri Poincare, Paris, France

Received 7 November 1967

In answer to Golub's [1] recent experiment, a new Gedankenexperiment is devised showing the dilemma between the equality of action and reaction and equivalence of Coulomb's and Ampère's pictures of magnetism, and the existence of a force c^{-2} i $\oint (\partial V/\partial t) \partial l$ applied to a closed current by a variable electric potential.

Golub et al. [1] have recently reported an experiment which may be taken as indirect proof that the *local force* [2] c^{-2} di/dt $V \, \delta l$ e. m. u. applied to a variable current in a fixed wire by an external electric potential has no physical existence. Two possibilities are then left:

I. Although the above local force does not exist, the integral, gauge independent, expression $[3] c^{-2} di/dt \oint V \delta l$ is that of a force applied to the total current; but, as was explained [2] this would be hard to understand.

II. The integrated force does not exist either; then two unavoidable consequences would be (A) the non equality of action and reaction applied to the sources of the field [2] and (B) the non equivalence of the Coulomb and Ampère pictures of magnetism [3].

We thus feel that the problem we have raised [2,3] is a fundamental one, and will present here a new Gedanken experiment in support of this claim.

A rectilinear wire of finite length is slowly charged according to the law

$$j = -Kz, \quad q = -Kt,$$
 (1)

where K denotes a constant, t the time, j(z,t) the current intensity and q(z,t) the charge per unit length. Such a situation can last a sufficiently long time to display the paradox we have in view.

* Of course, the time variation of the q distribution on z'z induces static charges in the solenoid. But the corresponding law being I independent, this is an independent energy-momentum balance problem. A closed toroidal solenoid of axis z'z carries a time independent current i $\delta\theta$ per longitude angle δ θ (natural cylindrical coordinates ρ , θ , z are used), and thus a "total current" I = 2 π i. As the magnetic field H_1 = curl A_1 of the rectilinear wire is time independent no extra current is induced in the solenoid *.

Thus, the rectilinear wire z'z and/or the charges therein feel no force due to the presence of the I current in the solenoid. The paradox is that the solenoid feels an overall Laplace force of direction z and value

$$F_{1_z} = I \partial \Phi / \partial z$$
 (2)

with Φ denoting the flux of H_1 through a semimeridian section S of contour C:

$$F_{1z} = I \iint_{S} (\partial H_1/\partial z) \cdot \delta s = I \oint_{L} (\partial A_1/\partial z) \cdot \delta I$$
 (3)

The paradox reaches a climax when we remark that the radiation expression of the reaction to the force [2] is, H_2 denoting the solenoid's magnetic field.

$$F_{2_{\mathbb{Z}}} = -F_{1_{\mathbb{Z}}} = c^{-2} \iiint_{\nu} (\partial E_{1}/\partial t) \times H_{2} \, \delta v \tag{4}$$

with the integral taken inside the solenoid this is why our Gedanken experiment implies a closed toroidal solenoid: to have H_2 trapped in its interior. Substituting in (4) $H_2 = I/2\pi\rho$ yields (as $E_1 = \operatorname{grad} V_1$, due to the fact that $\partial A_1/\partial t = 0)$

$$F_{2_{\mathbf{Z}}} = c^{-2} I \iint_{\mathbf{S}} (\partial E_{1}/\partial t) \, \delta s =$$

$$= c^{-2} I \iint_{\mathbf{L}} (\partial V_{1}/\partial t) \, \delta I.$$
(5)

Substituting in eqs. (4) and (5)

$$dA_1 = (jdz/4\pi r) u$$
, $dV_1 = c^2 q dz/4\pi r$, (6)

with u denoting the unit vector of the z axis and r the distance from the dz element **, yields as was announced.

$$d(F_{1z} + F_{2z}) = 0. (7)$$

Finally the dilemma is:

I. The equality of action and reaction and the equivalence of the Coulomb [4] and Ampère pictures of magnetism hold, in which case the new, non-conventional, force [5] must exist.

II. The force [5] does not exist, in which case there is neither equality of action and reaction nor equivalence of the Coulomb [4] and Ampère pictures of magnetism.

Incidentally, the problem of existence or non-existence of the force c^{-2} $di/dt \neq V_1 \delta I$ can be

cast in the form of a Gedanken experiment parallelling this one.

References

- 1. L. Golub, J. P. Carrico, T. S. Stein and M. C. Weisskopf. Phys. Letters 25A (1967) 495. One thing that makes the proof questionable is that in our paper [2] the magnetic moment change follows the intensity change in a fixed circuit, while this is obviously not the case in Golub's experiment.
- 2. O. Costa de Beauregard, Phys. Letters 25A (1967)
- O. Costa de Beauregard, Phys. Letters 24A (1967)
- O. Costa de Beauregard, Compt. Rend. 264 B (1967), 731.
- ** For given r and $\Delta t \equiv r/c$, $\mathrm{d}A_1$ and $\mathrm{d}V_1$ and $\mathrm{d}V_1$ satisfy the Lorentz condition.