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The challenge of understanding Saumont’s experimental findings has motivated this derivation of magnetostatics from the
expression T'=i4 of the stress tension along a stiff current loop. From the integral equivalence of the Ampére and Laplace forces
we denve the existence of a repulsive tension T= 4% inside a straight current.

1. Magnetostatics of current loops derived from the
statics of filaments

As is well known, the force density falong a (pos-
sibly stiff ) filament of line ¢lement df is related to
the tension T via

Sf=d471/dil; (1)
also, per line element the torque
dC=Txdl (2)

is applied; finally (think for example of a coil-spring
holding a weight in a gravity field ) a potential energy

dW=T-dI (3)

is stored per line element.

At the extremities P and Q of a filament in static
equilibrium, tensions Ty and T, counterbalancing
the force and torque densities distributed along it,
build up a representation of the corresponding
wrench, or combined force and torque [1].

Consider then a rigid current loop of intensity i,
at equilibrium with its magnetostatic field; if ideally
severed at two points P and Q, the opposite wrenches
applied to the complementary segments PQ and QP
are represented by paired opposite tensions = T and
% T5. We will show that these are tangent to the fil-
ament, and exacily expressed in the form

T=iAd, (4)

where A denotes the vector potential in the Ampére
gauge.

dd=r-'idl. (5)

Postponing the proof, we now use these two pre-
misses for a concise derivation of the well known
formulas of the magnetostatics of current loops.
Substituting (4) in (3) we get the gauge depen-
dent differential expression of the magnetic energy

dW=i4-dl, (6)

the closed integral of which is the familiar /@; sub-
stituting (5) we get the action-at-a-distance style
expression of the mutual energy of two current
elements,

d, W=r~Yii’dl-dl’ , (7)

a factor § intruding in the double summations.
From (1). (4), (5) and the identitydr ~'=—r~r
we get

&y T=+r=3%0 (dI-dl' )r (8)

as expressing the directly opposite shortened Ampére
Jforces felt by two current elements, well known to be
integrally equivalent 1o the Laplace forces.

Finally, inserting (4) into (2) we get the gauge de-
pendent expression of the torque applied to a current
element,
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and. substituting (5), the action-at-a-distance
expression of the opposite torgues felt by two current
elements,

daC=2r-ii'dIxdl’ . (10)

Linear and angular action-reaction opposition be-
tween interacting current loops at mutual rest is thus
expressed in instanteneous action-at-a-distance style.

Now we apply these formulas to two complemen-
tary arcs PQ and QP of the same circuit.

In the zero cross section limit, the integral of for-
mula (5) diverges: the familiar cut-off procedure uses
a phenomenological self-induction coefficient, a pure
number k such that d W/d/=ki?; the r ! dependence
of A4 to its source entails that the Ampére gauged A
1s langent to the circuit, with the value A=ki. Thus
ki? is the common value of the linear energy density
w=dW/dl and of the longitudinal self stress-tension
T'=IiA; this definitely proves the existence of a lon-
gitudinal repulsive stress tension T=ki* along any
current carrying wire. It is of course quite usual that
a trapped energy density exerts an equivalent pres-
sure upon its container.

So, the paired opposite tensions + Tp and +Tq ap-
plied at severance points of a current loop are tangent
to it; if expressed in the form i4, no arbitrariness is
allowed, so A must be taken in the Ampére gauge. This
is exactly similar to what happens in, say. the elec-
tron self-energy problem, where the electric poten-
tial’s Coulomb gauge must be used for expressing the
self-energy e*/2r.

This completes the proof alluded to after formulas
(4) and (5).

2. Hairpin style devices and Saumont’s [2]
experiments

Consider the case where the segment PQ is a
“hairpin” connecting two mercury containing cups
inserted in a current loop. In Ampére’s experiment,
where the cups are at the ends of parallel “rails” [3],
the “hairpin™ is repelled by the Laplace-Lorentz
force. The point is that the paired rails do feel the op-
Dposite reaction, that is, the Ampere compression, This
1s confirmed in an experiment of Graneau [3].

A quite significant experiment would use a Z-shaped
rather than a U-shaped circuit, the hairpin bridging
cups at the ends of antiparallel rails, and a torsion
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balance measuring the torque. The prediction is that
this torque must accentuate rather than flatten the Z.

Saumont’s device can be seen as a refinement of
Ampére's one. Very consistent measurements using
it, including counter tests, do display the repulsive
Ampére tension in the form T=ki?, and show that
it is longitudinal inside the mercury. The number &
comes out as k=~ 2.45.

3. Concluding remarks

(1) Read in terms of the statics of filaments, the
equations of the magnetostatics of current loops en-
tail that the physical stress tension T along a (pos-
sibly stiff ) conducting wire exactly is expressed as
i4, i denoting the intensity and 4 the vector potential
in the Ampére gauge. This is exactly similar to what
occurs in the electron self-energy problem: as ex-
pressed in terms of the electric potential V, the cor-
rect value of the self-energy e?/2r obtains iff the
Coulomb gauge is selected.

Other examples [4] are easily adduced, all under
the heading: electromagnetic gauge selected as an in-
tegration condition.

(2) The well known integral equivalence between
the Ampére force proper, or a shortened expression
of it, and the standard Laplace-Lorentz force, is thus
confirmed: but it turns out that the concept of an Am-
pére tension T=IiA is much preferable.

The said equations definitely entail the existence
of a longitudinal repulsive stress tension T=ki* along
any current carrying wire, this being the integral ren-
dering of the differential Laplace-Loreniz force.

(3) Saumont’s [2] experiments, viewed as im-
proving Ampére's so-called “hairpin experiment”,
do display the repulsive Ampére tension; also, they
exemplify “selection of the electromagnetic gauge as
an integration condition™ — for expressing action-
reaction opposition.
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