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The fundamental discovery of special relativity theory is that experi-
mental facts admit a joint definition of time and length measures which
entails a physical equivalence’ between them. The present essay will
review the historical development of this idea and its consequences for
physics, and give a speculative discussion of the profound influence that
it is likely to have on our philosophical views of the world.

1 The Relativity Principle of Classical Dynamics

The relativity principle of classical dynamics was a true predecessor of
the special relativity principle of Einstein, and it was already related in
many respects to fundamental aspects of the time problem.

The formulation of this pre-Einsteinian version of relativity lies
between the absolute space principle postulated by Newton, and what
may be called the relative motion principle of classical kinematics.
According to Newton's absolute space principle? there must exist an
absolute spatial reference frame relative to which all movements can be
thought of as taking place. This idea turned out later to be metaphysical
in character, ie., deprived of operational support. By stating this prin-
ciple Newton gave a sort of formal status to common sense feeling; it
may be that the postulate had its motivational root in the common
experience of living on solid ground,

In complete contrast with the absolute space principle, the relative
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motion principle of classical kinematics seems at first sight to be experi-
mentally established. This new principle emerged during the development
of classical kinematics; it follows directly from Euclidcan geometry and
Newton’s principle of an absolute time.* It states that any two solid
reference frames, in whatever relative motion (translational acceleration,
rotation, or arbitrary motion), are kinematically equivalent for the
description of movements.

The relativity principle later discovered in classical dynamics is neither
of these two, but lies, so to speak, between them. On the one hand,
there is nothing in dynamics to substantiate the idea of an absolute refer-
ence frame but, on the other hand, dynamics gives a precise way to
characterize absolute accelerations or rotations* (which classical kine-
matics cannot do). Thus, according to dynamics, the class of fundamental
reference frames of space is neither as restricted as Newton supposed it
to be, nor as broad as the purely kinematical relative motion principle
would have it. One deduces in classical dynamics that the class under
consideration is restricted to solid reference frames all in uniform relative
translation with respect to each other; experimentation then allows the
full characterization of these so-called Galilean frames.”

The simplest operational characterization of the class of Galilean
frames refers to the inertial motion of a point particle. But, as Thomson
and Tait have stressed in their famous Natural Philosophy,® this implies
a simultaneous operational characterization of what may well be called
a Galilean time scale ¢, for it is obvious that a point motion which is
rectilinear and uniform, when referred to any Galilean frame and to a
Galilean time scale ¢, will generally not remain so if referred to a non-
Galilean frame and/or to a non-Galilean time scale - — F(r). Therefore
(and this is an important point for our purpose) it turns out that there
is a very close connection between the appropriate physical definition of
a time scale and the Galilean relativity principle.”

Natural clocks, that is, clocks evidently displaying Galilean time, may
be any kind of inertial motion or, more generally, any motion implying
the fundamental Newtonian formula of dynamics; such motions form
the physical basis of mechanical clocks of either astronomical or labora-
tory size.

Now we must discuss the question of the measurability of time. My
point of view will perhaps become clear if we briefly review the analogous
development of a quantitative scale of temperatures. In the theory of
heat it is found that temperatures are rendered measurable through the
introduction of Kelvin’s thermodynamic scale, or at least through the
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laws, due to Boyle and Gay-Lussac, for the compressibility and dilation
of perfect gases. The point is that, before these definitions, the additivity
of two temperature intervals could not be validly defined. But the dis-
covery of the universal laws of perfect gases and/or of phenomenological
thermodynamics created a new situation, permitting a universal relation
of temperatures to other physical quantities; namely, to volume and
pressure (PV — nRT) by use of a “perfect gas” thermometer, or, even
better, to the mean value of the kinetic energy of (monatomic) gas
molecules through the Maxwell-Boltzmann formula Yemv® = kT,
The presence of the universal constant R or k — R/N (N, Avogadro’s
Number) in the perfect gas formulas is significant, as it expresses a
physical equivalence between temperatures and pressure-volume products
or kinetic energies,

A very similar situation occurs in the time problem. Before the
discovery, by Galileo and by Newton, of the universal laws of inertia and
of inertial response to forces, the physical status of clocks was quite
similar to that of thermometers before Lord Kelvin: there was no possible
guarantee that a unique and valid definition of a time scale could be
extracted from the performance of, say, sand or water clocks, or even
from astronomical clocks.®

So, the new universal law (contrasted to the previous multiplicity of
uncongruent physical clocks) may well be taken as Newton’s formula
for a point particle, ¥ — m .‘5’:«2! In this formula there is of course a

universal constant present, but this constant is traditionally taken as
equal to one with the dimension zero through our appropriate joint
definition of the units of force, mass, space and time." While the addi-
tivity of space intervals (in Euclidean geometry), of forces (through
arguments based on statics) and masses (quantity of matter'®) is taken
as obvious, the additivity of Galilean time intervals as expressed in
Newton’s formula is established through the universal character of this
formula,

An alternative statement is that the universal constant implicit in the
Galileo-Newton formula establishes the physical equivalence between
forces and mass-acceleration products—an equivalence which is directly
experienced in the form of “inertial forces.”

Our conclusion is that the Galileo-Newtonian universal laws of inertia
have rendered time “measurable” in very much the same way that the
universal laws of thermodynamics have rendered temperature measurable.

The profound significance of this remark is to be found in Einstein’s
and Minkowski’s special theory of relativity,

419




TIME AND MATTER

2 The Relativity Problem in Classical Optics
and Electrodynamics

When it had become clear that neither classical kinematics nor classical
dynamics were able to define by themselves an absolute reference frame,
it was hoped that studies in some other branch of physics would circum-
vent this apparent failure. In this regard kinematical optics, L.¢., the optics
of moving systems, seemed at first quite promising. Indeed, the nineteenth-
century physicists believed that the Huygens-Young-Fresnel optical waves
were propagated in some appropriate medium which they named the
“Juminiferous ether”; and this hypothetical medium seemed likely to take
the place of Newton’s hypothetical absolute space. For example, accord-
ing to classical kinematics, the spherical waves emitted at velocity ¢ by -
a point source at rest in the ether would be expected to have velocities
ranging between ¢+ v and ¢ — v in a reference frame moving with
velocity v (v < ¢) relative to the ether. So began the long history of the
physical connection between kinematics and optics, the conclusion of
which was to be Einstein’s remodeling of kinematics after the require-
ments of electromagnetic theory.

In 1818, Arago proposed to detect the earth’s “absolute motion™ by
measuring the refraction of starlight by a prism. This was a turning point
in the history of physics, though it is clear today that Arago’s way of
questioning nature was not the most unambiguous one; Angstrdm later
improved the Arago test by using a source, a receiver, and a prism all
at rest in the laboratory, so that no problem of a relative motion between
the source and receiver was implied.

Nature’s answer to Arago's question was negative: the observed
refraction was the same as if the source, the receiver and the prism were
all at rest relative to the ether. This came as an intellectual shock.
Fresnel’s answer to the riddle, known as the “cther drag postulate,” was
extremely remarkable: the formula was so adjusted that the effects of
velocity v relative to the ether were eliminated up to the second order in
B = v/e}* Thus the problem of finding a second-order effect was im-
plicitly raised. When Veltmann'® and Potier®® had produced a theorem
showing that due to Fresnel’s formula the absence of first-order effects
is absolutely general, the problem of finding a second-order effect was
explicitly raised and this of course was the prologue to the famous
Michelson-Morley experiment.

Before we come to this experiment, however, some more thinking on
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the state of affairs resulting from the work of Arago, Fresnel, Veltmann
and Potier will yield profound insight into the relativity problem as
viewed from its optical side. Our discussion will approach relativistic
kinematics in a post facto way which is perhaps unfamiliar to some
readers but which allows us to stress the most essential aspects of the
subject.

It must be noted first that Fresnel's answer to Arago’s result was
metaphysical in that its wording still implied the notions of an ether and
an “ether wind,” while its formula was precisely built so as to climinate
(in the first order) all observable effects of the ether wind. A quite
parallel situation arose later, but this time in the second order, with the
“contraction hypothesis” that was Fitzgerald’s and Lorentz’s answer to
Michelson’s negative result,

Moreover, Potier made it clear that the Fresnel formula expresses a
purely kinematical law of universal character,'* namely, a composition
law between three relative velocities: light vs. refracting medium, refract-
ing medium vs. laboratory frame, and light vs. laboratory frame. This
feature of the first-order Fresnel formula closely parallels that of the
second-order Fitzgerald-Lorentz formula.

In 1908, von Laue showed that the Fresnmel formula is merely a
special case of the relativistic velocity composition law. The reciprocal
step was taken in 1952, when Abelé and Malvaux'® showed that if the
Fresnel formula (in Potier's form) is postulated as the infinitesimal com-
position law of a group, the Einstein-Minkowski kinematics can be
deduced.'®

The group concept, of course, has been historically,’”” and is still
essentially, one of the foundation stones of relativistic kinematics. But,
in the seventies, the concept was hardly available to physicists; so the
whole story had to be re-enacted in a strikingly parallel fashion, in the
case of the second-order ether-wind effect.

In 1878, Michelson and Morley applied their interferometer to the
problem of finding the supposed second-order effect of the ether wind.
Once more no such effect appeared. Once more theoreticians formulated
an ad hoc hypothesis: the Fitzgerald-Lorentz hypothesis, implying a
universal formula of longitudinal contraction of material bodies under
the ether wind. Once more there was something “metaphysical” in the
discourse, the postulated ether wind and absolute frame of reference
having no experimental counterparts. And once more the proposed
formula was of a universal character, and purely kinematical in its nature.

In the meantime, two important concepts had come to maturity, whose
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association constitutes the key of the problem. On the one hand, various
thinkers, among them Mascart'® and Poincaré,'® had become convinced
that the relativity principle of dynamics is in fact the universal relativity
principle, valid in all branches of physics. They concluded that the law
of preferential equivalence of all Galilean frames is in fact a kinematical
law which is also valid in optics, electrodynamics, etc. On the other hand,
continuous group theory had emerged as a doctrine.” In essence, rela-
tivistic kinematics follows as a consequence of the application of group
theory to optics or electrodynamics.”*

It was the young Einstein®® who showed that the unobservability of
ether effects leads to a new joint definition of the length and time meas-
ures according to which the velocity of light is found to be the same in
all reference frames. These measures are precisely those implied in the
Lorentz transformation formulas connecting inertial frames*

#=ﬁ’y’=y'z'=z’{=t\/_l——v_—;_§

(8 = v/c) which read in reciprocal form
x4t '+ vx'/c
X= V= ,z:=z’,t=-—-——-———___..
S, s VI—F

The main difference between the new Lorentz group and the corre-
sponding classical Galileo group
T2 Y=y L= =1
=X 4w y=yla=die=t,

is that the transformation affects not only the spatial variables, but also
the time variable ¢; thus, @ “proper” time t is attached to each inertial
frame or, in other words, an inertial frame is not merely a spatial refer-
ence frame (as in the Galilean case) but also a temporal reference frame.
To emphasize this important difference, inertial frames are called
Lorentzian rather than Galilean in the relativistic kinematics. It is well
known, and obvious, that the limiting form of the Lorentz formulas when
one lets ¢ = = is the Galileo formulas; it may thus be said of the new
kinematics what is written of the New Testament: that “it does not
destroy, but it fulfills the Old."”

By setting ¢ or # = 0, one verifies easily that the Fitzgerald-Lorentz
contraction is built into the Lorentz formulas; the point is that, in the
Einsteinian presentation, this contraction is reciprocal. Each of two
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Lorentzian observers finds that the yardstick carried by the other seems
shorter than his own.** This conclusion seemed highly paradoxical in its
day; but there is in it no more mystery than in the well-known Euclidean
fact of mutual foreshortening of distant objects known to be of equal size.
A somewhat similar situation relates to time measurements, but here the
situation is especially interesting because of an apparent paradox which
has no analogue in the contraction of length. In picturesque form, the
paradox considers a pair of twins, one of whom is an astronaut and
undertakes a long space voyage while his brother, an administrator,
stays home. Since the astronaut’s time scale is contracted by the motion,
it is expected that the astronaut should be biologically younger than his
brother on his return. On the other hand, if there is no such thing as
absolute motion, one might at first think that the astronaut could be taken
as the reference point, with respect to which the administrator travels
and returns, Then by the same argument as before, the administrator
should be the younger when the journey is over. This “twin paradox”
has been much discussed, but its resolution is basically simple. The
doctrine of relative motion applies only to uniform motion in a straight
line, and the astronaut is distinguished from his brother by the accelera-
tion he undergoes. The astronaut is finally the younger of the two.

This closes our survey of the problem of kinematical optics. Before
we start discussing Minkowski’s remarkable interpretation of Einstein’s
theory, it will be useful to explain how, according to Duhem’s and
Poincaré’s epistemological views,* Michelson’s experiment “allows and
suggests” the new relativistic joint definition of length and time measure-
ments.

3 Operational Commentary on the Results of the
Michelson-Morley Experiment

In this section we shall show that there exists a close connection between
four classes of experiments: 1) experiments of the Michelson-Morley
type; 2) optical measurements of length;*® 3) Hertzian measurements
of time*” and 4) measurements of the speed of light. These considerations
suggest that electromagnetic waves were truly predestined to furnish the
scales for distance and time. They also permit us to understand without
mathematics that to use these optical or Hertzian scales makes the speed
of light in vacuo an invariant by definition.

1) Michelson’s interferometer is essentially an optical scale arranged

423



TIME AND MATTER

50 as to measure changes of length by detecting differences in the number
of standing light waves along two rigid scales. It follows that the most
direct interpretation of the negative result of Michelson and Morley is
that the number of wave lengths of light emitted by a monochromatic
source at rest with respect to a rigid scale and spread out along the scale
is independent of the orientation of the scale. In 1887, when it was first
firmly established, this result seemed highly paradoxical. But ever since
the development of quantum mechanics in 1925-26, a positive result of
the Michelson-Morley experiment would have seemed equally paradoxi-
cal. In fact, quantum mechanics describes any solid body as a standing
de Broglie wave of complex structure,®® and since waves of light are
considered in quantum mechanics as a special case of matter waves,
there is clearly no reason to suppose that the two kinds of waves should
exhibit different kinematical behaviors.**

2) Michelson's negative result is required by the theory and practice
of the optical measurement of lengths. If it were possible to detect the
so-called “cther wind,” any comparison between a rigid scale and an
optical wave length would have to be preceded by a determination of the
direction and velocity of the wind.®

3) Suppose on the other hand that one decided to use the period of a
monochromatic optical radiation as a time scale. This raises no kinematic
problem analogous to that just discussed. Now the problem is a dynamical
one, for we must know whether the new time scale is (in the non-
relativistic limit) identical with that furnished by a body in uniform
motion. Quantum mechanics again gives an affirmative answer: it is well
known that the inertial motion of a particle is unambiguously described
through a monochromatic plane wave’ whose mathematical description
is manifestly covariant in character.

We have thus explained how Michelson’s negative result permits and
suggests that we adopt at the same time the wave length and the period
of a monochromatic optical wave as our standards of length and time.*
Relativity thus legitimizes the situation that exists, and we can understand
that it is the forms of the equations of d’Alembert and Klein-Gordon,**
together with the Lorentz group under which they are invariant, that
renders optical wave lengths and periods the natural measures of space
and time. An optical wave is chosen rather than a matter wave because
of the properties implied by the simpler equation of d’Alembert.

4) But to adopt the wave length and period of an optical wave as our
standards of length and time is ipso facto to declare that ¢ is an absolute
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constant, a coefficient of equivalence between space and time. This is
because of the exact relation

A= Cr

between the wave length A and the period 7.

Finally, we may remark that a number of the most modern determina-
tions of ¢ follow the above conceptual scheme very closely. In the micro-
wave cavity measurements of Essen® and of Hansen and Bol,* the
spatial dimensions of the wave are determined by measurements of the
cavity (some of them optical), while the period is compared with astro-
nomical time. In the band-spectrum method of Plyler e a** and Rank
et al,* ¢ was determined by measuring separately the periods and wave
lengths of the same molecular spectral lines.

At its first appearance, relativity seemed to mark a victory of optics
and electromagnetism over mechanics. This was because neither kine-
matics nor dynamics had up to this time recognized the importance of
the constant ¢. By now, not only the kinematics given us by relativity but
also the dynamics given us by de Broglie, Heisenberg and their followers
have assimilated into the physics of waves the constant ¢ in an essential
way. Today it would be possible to deduce all of relativistic kinematics,
not from electrodynamics and optics via d’Alembert’s equation, but more
generally from the properties of matter described by the Klein-Gordon
equation.”® All is therefore once more in traditional order, with the
quantum theory of the electromagnetic field a special case of a more
general theory of mechanics which is the theory of quantized fields.

4 Space-Time “Equivalence” and Minkowski's
Four-dimensional Geometry
The relativistic “equivalence™ between space and time is strongly sug-
gested by the elementary expression for a field component of a light wave

¢ = cos 21(%—%)

where - and A are the wave's period and length, or by the form of
d’Alembert’s equation, of which ¢ is a solution. But the exact nature of
the “equivalence” is expressed only by the Lorentz formulas which
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