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Abstract
Muchmphymumphodmthdnkeof:gmpthuh lly admitted. Einst
mass-energy equival law and actio ti ion (Newton's third hw)mqnui-ntnﬁc

systems are two gravitationally-induced oondiﬂou plu:iu; imperative restrictions on equations
displaying the electric or the magnetic potential. Familiar (but overlooked) examples of this are
recalled. Significant new ones are Graneaw’s and Saumont’s experiments evidencing the Ampére
stress tension T = [ A along a current loop, and through it physicality of the vector potential. Also,
mgnluueoﬂdumhbhdlpohmqutmmudh.ulﬁrmchcﬁicm@hpm

No denial of the special relativity theory (SRT) is implied in these arg ts, and indeed
Section 11 extends this dis jon to the relativistic far-action Wheeler-Feynman electrodynamics.
Sectlunlanulhdontodie“ddn!tbnofn‘ guetic spin density implying the 4-potential.

ti ts a general argument pertaining to the Lorentz condition, a strong Lorentz-

hv-ﬂnhatﬂabuonthpugahﬁmubwinmyhmofnhﬂﬁaﬁcdcw As
the free-gauge-transforming L are less propagating field magnitudes, ghosts
%0 to speak, adhering tions obeying the Lorents condition (such as Liénard-Wiechert's)

are loft as the physical solutions of Maxwell's equations. Section 17 extends the gauge discussion
to the Dirac electron theory.

As the wrench concept, familiar in Euclidean-Galilean statics, ki tic and dy jcs of
solids, is no longer so familiar, and I have used it, Section 19 recalls it.

1. Introduction

Physicality of the electromagnetic potential is held as a heresy or truism,
depending on zero or non-zero photon rest mass; so abrupt a discontinuity is
questionable, and does not seem very physical. As in many problems, the solution
is best presented in an adapted gauge; it is not certain that the choice of a gange is
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just an affair of predilection, and that no physical justification is needed. Examples
can be adduced to the contrary, a few significant ones being presented in this paper.
Here are three simple ones offered as appetizers.

In the classical electron radius problem, expressing the self-energy ¢?/2r in terms
of the electric potential as —eV /2, requires the use of the Conlomb gauge V = —e/r;
no other choice is left.

This gauge is selected as an integration condition, via Einstein’s mags-energy
equivalence law. Stating that, in energy units, the electron’s rest mass is some
511,000 electron-volts (strictly speaking, positron-volts) makes sense in the Coulomb
gauge only. This shows that the choice of gauge and of integration condition are
mutually implicative, both being dictated by the underlying physical model.

A related remark holds for the mutual energy: the weight of a vessel containing
gaseous or liquid hydrogen includes the “atomic mass defect”; the additive constant
in Coulomb’s binding energy is thus weighed as zero,

As a second example, consider a permanent current loop of intensity I at
equilibrium with its magnetostatic field. If the expression chosen for its self-energy
is the (gauge-invariant) one,

ms-lf.t.-dx. (1)

there remains the fact that barycenter's position depends on the linear distribution
of the vector potentials; therefore, at each point of the loop, A must have a definite
value. Einstein’s mass-energy equivalence dictates that a definite answer be found.

From the far-action expressed of the mutual energy of a pair of current elements,

d*W = *r='dl-dl' 2)

(where the factor 1/2 intrudes in a double summation), the needed expression is
uniquely fixed as the Ampére gauge

A=1 f rdl. 3)

Introducing our third example, we note that in any thought experiment using
weighing with ¢ dynamometer, Einstein's gravily-inertia equivalence entails a mass
(not rest mass) shift — via “gravity redshift” on the matter wave of any massive
particle, In a static Newtonian potential proper U = —¢~?GM/R, and m is thus
changed into m(1 - U).

Consider then the timelike Aharonov-Bohm effect, the electric analog of the
gravity lens effect. The phase shift A='eVT displayed by re-superposing two
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separated electron beams having spent a time T each in a uniform potential of
mutual difference V, displays the difference —c~?eV between effective masses.

Suppose that V is the potential difference between inside and outside a spherical
capacitor held in a uniform gravity field g. Measured outside the capacitor, an
electron’s weight certainly is the mechanical mg; and certainly then, V' denoting
the internal Coulomb potential proper, the weight measured inside the capacitor is
(m — ¢ 2eV)g.

Using Wheeler-Feynman's relativistic electrodynamics, we will argue in Sec-
tion 11 that a point charge Q immersed in a given 4-potential A* expressed in the
source-adhering gauge is endowed with the extra-inertial {-momentum QA*. This,
together with Einstein'’s gravity-inertia equivalence, validates our repeated use of
weighing thought experiments.

The Lorentz condition 8; A* = 0, another central issue in this essay, is inherent
in any form of explicitly relativistic electrodynamics, being a consequence of the
inhomogeneous d'Alembert equation 9{A* = j* and of the continuity equation
8,j* = 0. From these, and the definitions of the 6-field and 6-polarization tensors,
the whole system of Minkowski-Maxwell equations necessarily follows.

Concluding a review of various examples, a “high brow” argument penetrating
to the Lorentz condition is articulated in Section 16, restoring continuity when going
to the photon zero mass limit. Being a differential law, gauge invariance can yield
no objection against selecting the gauge as an integration condition.

The writing of this paper was well advanced when T.W. Barrett called my
attention to two works significantly advocating physicality of the electromagnetic
potential: Konopinski’s,! emphasizing the relevance of the vector potential in
momentum exchanges, and his own,? based on SU(2) aspects of electromagnetism.

2. Electromagnetic Hidden Linear Momentum

An electrostatic system ¢ and a magnetostatic system m both at rest have zero
Maxwellian mutual energy: E. - E,, + H,. - H,,, = 0. Also, neither force nor torque
is exerted between them.

Nevertheless “hidden” opposite linear and angular momenta do reside in each
— the fossils, so to speak, of the forces that were alive during the build-up of this
self-static system. During that time a stressed structure was needed as a removable
scaffolding.

Such systems are in a specific kind of indifferent equilibrium: moving one of the
two pieces generates a transient force and/or torque that moves deterministically
the other one. If the change is slow so that radiation is negligible the total work is
zero, and so is the net energy balance. If the change is monitored from inside, the
system’s barycenter is conserved.
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Such are the thought-provoking peculiarities implied in three independent®®
1967-68 papers summarized in the next section, which have motivated subsequent
comments.®’

The point emphasized here is that, as the opposite mutual momenta have
expressions quadratic in a field and a potential, the electromagnetic gauge is fized
as an integration condition, via action-reaction opposition.

As a simple example consider the system made up of a point charge ¢ of value Q
and a current loop m of intensity I and line element dl, both at rest. The charge's
well-known “hidden” momentum is

P. = QA, A=1fr-‘dl,,.. (4)

Let us show, via action-reaction opposition, that the current’s hidden momentum
is (in Gaussian units)

P...=Idel. V=-r71Q; (5)

A and V' denote of course the vector and the scalar potential respectively created
by the current and the charge. From formulas (4) and (5) we get the far-action
expression

Pe==Pu= Qlfr—ldl, QED. (6)

While the expression of the current’s hidden momentum is gauge-invariant,
the charge’s is not; use of the Ampére gauge (3) is then required for expressing
action-reaction opposition. Incidentally, a smaller remark was made long ago by J.
J. Thomson.®

If, in the presence of a point charge ¢, a current’s m intensity build up from
zero to I, the loop recoils, and the charge is projected; this has been termed the
magnetodynamic effect.”

These two opposite linear momenta being not directly so, there also exists a
hidden angular momentum problem.

3. Electromagnetic Hidden Angular Momentum

As a preamble we ask if the elementary “hidden momentum™ V Idl in the integral
(5) has local meaning or not.

Consider for simplicity the system made up of a circular current of radius r with,
at its center, a point charge generating the Coulomb potential proper V' = Qq/r. If
the current’s intensity I = gu is produced by a rotating ring of linear charge density
g, the moving stress-energy density w = Vg has a tangential momentum c¢~2V [
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(esu); this remains true for a current running inside a conductor to which the stress
tension 7' = w is transferred, because the moving deformation imprinted upon the
ring by each charge-carrier ( transports the linear momentum ¢~V Qv.

In either case, M = mr*] denoting the circuit's magnetic moment, the “hidden
angular momentum” C = 2vM must have been conferred on the conducting loop (2
is the value taken in the present case by a form factor we will meet with again).

In Sommerfeld’s hydrogen atom theory, V' denoting the Coulomb central
potential proper, ¢ 2eVv = (1/2)mp(v/c)*v are equivalent expressions of the
orbiting electron's extra momentum; in a transition, its variation is included in
the angular momentum exchanged with the photon field.

Correspondence between Sommerfeld’s orbiting electron and an Ampérian loop
is thus verified. Potential momentum as a corollary to potential energy follows
from mass-energy equivalence and relativistic covariance. Velocity dependence of
the electron’s “Maupertuisian mass” confers an anomalous gyromagnetic ratio on
both Sommerfeld’s atom, and an Amperian loop with a point charge at its center.

We thus conclude that the “hidden linear momentum” VIdl has local meaning,
and can in principle be tested in gyromagnetic experiments involving recoil of the
conductor.

This digression made, we return to the general problem.

Using in (5) the well-known'® general integral transform identity, with B, = 8,V
(u = 1,2,3) denoting the charge’s electric field, we express the current’s linear
momentum in the Poynting style

P.,.=I//Exds. )

Using then Ampére magnetic-shell-current-loop equivalence, we express the linear
momentum “hidden” in a dipole of magnetic moment M as

m=ExM, (8)
Inserting in (4) the expression of the dipole’s vector potential
A=r3Mxr (9)

and in (8) that of the charge’s electric field
B=-Qr i, (10)

we recover action-reaction opposition in an action-at-a-distance style, QED.

So, the (not directly) opposite linear momenta, P, attached to the charge
and P,, attached to the dipole, build up a (CP-invariant) hidden orbital angular
momentum

Co=rQMxr]xr=r"2QM:r)r - VM, (11)
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the latter expression displaying the electric charge’s potential V in the Coulomb
gauge.

Suppose that the dipole, initially in a metastable unmagnetized state, spon-
taneously acquires later a magnetic moment M. The total (mechanical plus
electromagnetic) linear and angular momentum must retain its initial value, zero.
This we express as (6), and as

Cp+Cn+C.=0, (12)

where
Cpm=—-VM, Ce=—r3Q(M-r)r. (13)

Thus we conclude that: (1) the point charge and dipole are projected in slingshot
fashion with (not directly) opposite linear momenta; (2) the dipole acquires, besides
its Einstein-de Haas mechanical spin, a “hidden spin” C,,; and (3) it feels a
precession momentum C..

More of this in Section 12.

To conclude this section and the preceding one: expressed in coherent emu or esu
units, the time-dependent mutual forces and torques discussed above are of order
¢~% so there is little surprise that their existence was only uncovered in 1967-68.

No denial whatsoever of the special relativity theory (SRT) is implied in the
use we have made of instantaneous far-action-reaction in quasi-static systems;
indeed Section 11, summarizing the Wheeler-Feynman electrodynamics, yields an
essentially similar conclusion: necessary selection of the source-adhering Liénard-
Wiechert {-potential for obtaining action-reaction opposition.

4, Summary of Three 1967-68 Papers; Penfield-Haus Extra-Linear
and Sommerfeld Extra-Angular Momentum

The argument in my paper® entitled “A new law in electrodynamics” was this;
As relativistic invariance requires that a magnetic pole of charge R, feeling at rest a
Coulomb force RH, should feel in motion a Lorentz force R(E x v/c+H), a variable
magnetic dipole of moment M = Ra in a constant electric field E must feel a force
E x dM/dt.

The source of E (for example a point charge) feels the transient electric field
induced by the variation dM/dt; one then verifies® that there is linear action-
reaction opposition between the dipole and the point charge and, using Ampére's
magnetic shell-current loop equivalence, one derives formula (5).

In Shockley’s and James's paper® published soon after mine, “Try simplest cases
discovery of hidden momentum forces on magnetic currents,” the thinking is very
heuristic, and not easily summarized. The conclusion they reach, and contemplate
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testing, is existence of a force B x dM /dt acting upon a variable magnetic dipole
immersed in a constant electric field.

Haus and Penfield,® in a paper entitled “Force on a current loop,” review
the whole matter, including their own previous thinking. From it I select. an
illuminating “Amperian derivation”!! of form:ll:c (5) above, via the relativistic

dependence of the mass of conduction electrons.
veloz?ygivgimensity I = qu, the linear charge density ¢ a.nd the current’s velocit'y
» depend at each point on the voltage V, because the ratio —m/e of the electron’s
relativistic mass to its charge is velocity-dependent: m = — ~~2¢V 4 const. That
each line element then carries a “hidden momentum” IVdl follows straightaway.

Penfield-Haus’s argument is akin to Sommerfeld's in the hydrogen :.;tom tfheory'
But while Sommerfeld derives a relativistic extra-angular momentum dmplaymg (as
we have seen) the potential’s Coulomb gauge, PH derive a relativistic extra-linear
momentum implying only voltage differences.

Corollary: ' i : i

Via Einstein’s inertia-gravity equivalence at any intensity I, including I = 0,
any conduction electron in a circuit at rest in a uniform gravity field has an extra
weight (mec~2eVg); more of this in Sections 10 and 12.

5. Interlaced Toroidal Magnet and Current Loop
ili i ic elements is even
This very familiar system (Fig. 1) made up of two mmetosta!.zc. :
more thought-provoking'? than the one previously discussed. This is & CP-invariant
system, of SU(2) symmetry.

O O g

(a) (b} )

Fig. 1. Interlaced toroidal magnet, m, and current, ¢. () Standard setup; (b) reciprocal setup;
{¢) topological invariance of the system.

The magnet need not be a torus stricto sensy; it can be & topolog.ical torus,
idealized for example as a wire each line element of which carries a magnetic moment



Fig. 2. Two contributions to the virtual work of the Biot-Savat force: one from the undefined
part of the circuit; one from the closed circuit equivalent to the ideal one penetrated by the virtual
deformation.

®dl, with ® constant. Exhibiting no external poles, the magnet traps its flux @.

This interlaced system has the well-known mutual energy W = I® (W = nl®
if there are n twists; n = 0,%1,42,...); none of it resides in the vacuum, as the
magnet’s field is identically zero. Enclosed within the magnet and/or current, this
energy W is topologically invariant: if both loops are thought of as perfectly flexible
and extensible, the system is in an indifferent equilibrium.

Let us write down its equations in the simple case n = +1.

Expressed as residing in the current loop, the mutual energy

wW=1I® (14)
has the gauge-invariant form
W= IfA’dlc s (15)

where A denotes the vector potential generated by the magnet. Expressed as
residing in the magnet it has the form

W=2 f H-dl, (16)
where H denotes the magnetic field generated by the current, namely
H= Ifr"r x dl, . (17)
Substituting this in (16) yields the far-action symmetric formula
wie f Frote i x i, (18)

which must be recovered by inserting in (15) the expression of the magnet’s vector
potential; the Ampére gauge

A=¢fr'3rxdl,,. (19)

is thus uniquely selected.

Dktributingtheenergybetweenmamtmdcumntiaofcoumenotle& to the
choice of who writes the equations: according to Einstein’s mass-energy equivalence,
W has physicality. It can be shown'? that there is equipartition.

Interestingly, @ classical analog of the Aharonov-Bohm effect shows up via the
emf d®/dt or (dI/Idt)® induced in the current loop by (respectively) varying & or
I; the latter option is quite impressive, as no transient electric field appears.

Does this time variable emf have local, observable meaning? It certainly has in
theformerease,as&A:Eismelectricﬁeld;whetberichasinthelattetme,
we leave as an open question.

6. Ampére Stress Tension T = IA along a Current Loop

Tn & nutshell, cast in terms of the statics of (stiff in general) filaments, the
far-action style magnetostatics of currents saysid: the stress tension T along a
conducting wire of intensity I immersed in an external vector potential A is

T=IA, (20)

A being expressed in the source-adhering gauge (3).

This amounts to saying that each charge carrier is endowed with the “hidden
momentum” QA previously discussed, No more compact expression of this stress
tension in terms of the field magnitudes is available. As shown below, A’s gauge is
selected as an integration condition via action-reaction opposition.

It must of course be kept in mind that a stress tension has potential meaning,
being actualized only at severance points of a filament. Also, as permanent currents
exist only inside closed conducting wires, the stress tension along a straight segment
comes from curved adjacent parts.

As f = dT/dl expresses the force density per line element, from (3) and the
identity 8r=! = —r~3r we derive the (widely used) formula of the directly opposite
“shortened Ampére forces” exchanged between any two current elements:

d*fy = —d*fy = II'r~3(dl - dl')r . (21)

Also, as dC = T x dl expresses the torque applied to a line element, by substituting
(3) we get the opposite torques exchanged between any two current elements

d*C = +II'r~'dl x dl' . (22)

Direct linear and angular action-reaction opposition are evidenced in these formulas.

Conversely, assuming (21) and (22) as expressions of the mutual force and torque
exchanged between any two current elements, that of the stress tension along a
current carrying wire comes out as (20), with (3) included.




From this follows a natural representation of directly opposing wrenches'
(combined force and torques: see Appendix, Section 19) exchanged between two
complementary ares PQ and QP of a current loop: paired opposite tensions +Tp
and Ty applied at the severance points [calculated by integrating (21) and (22)
over dl along PQ and over dl’ along QP).

The Ampére gauge (3) is thus selected as an integration condition, via action-
reaction opposition,

Compatibility of this Ampérian scheme with the one based on the Biot-
Savart (BS) force law has been extensively discussed'® by the founding fathers
of electrodynamics [the differential form of the BS formula is due to Laplace (1829)
and to Grassmann (1845))].

For example, deforming at constant intensity I (with the help of an emf) a
current loop immersed in a fixed vector potential A, the varied mutual energy
comes out as equal to the work of the BS force:

5w=15o=16fA-d1=1//B-[d1x61]=1//[Bxd1]~a. (23)

Applied to the self-energy (1/2)70 of a current loop, the same argument, yields
only half the work of the BS force: the other half must then go into a counter emf
(cf. Fig. 2).

Momentum conservation is known to raise problems!®:  directly opposing
wrenches felt by complementary arcs PQ and QP of a circuit are not ezpressible in
terms of the BS force [while they obvionsly are in terms of the Ampére force (21)
and torque (22)].

The BS, or Laplace-Grassmann, force applied to a current element Idl by
another one Idl’ is

d*f;, = [’r'3(dl' xr|xdl= d*fy — Pr3(dl-r)dl’ , (24)

d*f, denoting the (shortened) Ampére force (21). Thus the nonzero sum of the BS
forces applied to each other by two current elements I'dl and Idl' is

d*(f, +£)) = PPr3[dl' x dl] x r , (25)

so that its double integral over dl along PQ and over dV' along QP is not identically
z€ero.

The traditional rejoinder starts from the remark that the last term in (24) cancels
out in a closed integral over dl, meaning that the Ampére and BS forces applied to
a current element by the rest of the circuit are equal. But one contour integral, and
a double integral over complementary arcs of a circuit, are quite different things.
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It was then argued that a current's field is indivisible so that the partial field
generated by a current element has no physicality. This hardly fits the Lorentz
electron theory, where each electron in a line element dl acts upon each one in
another one dl', and does it according to the Lorentz formula.

The action-reaction conundrum is thus transferred to the electrodynamics
of point charges, where Wheeler and Feynman!? have cleverly solved it (see
Section 11).

The trick restoring formal action-reaction opposition in both Ampére's mag-
netostatic and Wheeler-Feynman’s relativistic electrodynamics is: confer on the
charge carviers the potential momentum QA or QA', the vector potential being
the source-adhering Ampére or Liénard-Wiechert one; non-collinearity of velocity
and momentum then follows; the IA tension and momentum QA concepts clearly
imply each other.

To conclude: Integrally equivalent to the Biot-Savart or Laplace-Grassmann
scheme of magnetostatics which duplicates the Lorentz electrodynamics, there
is an Ampérian far-action scheme duplicating the Wheeler-Feynman relatiwistic
electrodynamics. Linear and angular action-reaction opposition are evidenced in
if.

7. Self-Energy and Ampére Stress Tension

Denoting by k the (dimensionless) self-induction coefficient, by w the linear
self-energy density, and by t the tangent unit vector along a current loop, the
consequence T -t = (1/2)w = kI* of (1), (20) and (21) exemplifies the usual
proportionality between a trapped energy density and the pressure it exerts.

Due to its 1/r dependence, the self-vector potential A along a thin current is
tangent to it. If then the ratio d/R of the wire’s diameter to its curvature radius is
everywhere small, the self-induction coefficient is constant. Thus dA = d(A-t) =0
and in an extension of the circuit, the varied self- energy very nearly equals half the
work of the tension (as it does half the work of the BS force). Under this restriction
an alternative expression of dA ~ 0 is 8,A4,dl" =~ 0, entailing

fu = BoAudl’ = [8, A, — D AN ; (26)

the linear force density associated with the tension T = IA is equivalent to the
Laplace-Grassmann one.

The “linear pressure” T is displayed in Granean’s “exploding wires experiments”
summarized in Section 9. In view of Saumont’s experiments, also summarized, we
notice that in a deformation affecting only an arc PQ of a circuit, two contributions
to the varied self-energy can be considered: one due to the fixed part QP, and one



equal to the self-energy of an ideal circuit made up of the difference between the
final and initial positions of the arc PQ.

In the zero cross section limit k's expression diverges. Significantly, flux
quantization along a superconducting loop removes the divergence. From the flux

quantization formula

nh
D = vdli= ===
fA dl : (27)

and the expression of the current’s intensity in terms of the frequency flow of electron
pairs
= —2ev, (28)

we derive the self-energy quantization formula

2W = &1 = nhw . (29)

8. Graneau’s and Saumont’s Experiments Evidencing
the Vector Potential

Graneau's'® “railgun” experiment is an enlarged version of Ampére’s “hairpin”
one. Feeling the BS force, a sliding bridge connecting two laterally constrained
long straight parallel conductors generates by reaction a repulsive tension 7' along
each wire, which can be evidenced at any abscissa x by inserting a mercury-loaded
Jjunction. If the emf generator is thonght of as infinitely distant, T' is z-independent,
and unchanged in virtual displacements of the bridge; its relation to the virtual work
is 2T = dW/dz, like in a Swiss clock powered by a descending weight. According
to Eq. (23) its expression [A is a corollary to that of the virtual work of the BS
force applied to the bridge. Physicality of 7' then implies selection of a preferred
gauge, the form of which can only be A = kI. Eristence of the Ampére tension is
thus unquestionable.

Two more sledgehammer proofs of existence of the repulsive tension T = 2w
(w = dW/dl) along a straight current are these: (1) the tangential tension 7' is
radius-independent along a circular current, and (2) it is equivalent to the internal
magnetic pressure (1/4x)B? stretching a long straight coaxial conductor capped
by flat conducting discs; a and b denoting the inner and outer radii, the value
2w = I?In(b/a) is obtained either via 2w = I(A, — As) with A = [Inr, or by
integrating 27r B2%dr from r = a to r = b with B = I/2rr.

Graneau’s'® “railgun” and “exploding wires” experiments I present by using his
own words ~ with his permission and that of his publisher.'® Un-indicated cuts are
made, but of course the reader can go back to the original. My personal comments
are inserted in square brackets.
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While Granean'’s evidencing of the repulsive Ampére tension has led him to adopt
an anti-SRT stance, I deem the existence of this force not only quite compatible
with relativistic covariance, but indeed a corollary to the Lorentz force applied to
the flowing electrons.

Let us start with railguns (Ref. 19, pp. 156-8):

“The gun consists of a pair of straight and parallel conductors one end
[of which] is connected to a source of electric current. This end is the gun
breech. The other end is the muzzle through which the projectile leaves.
To begin with a short piece of copper bridges the rails near the breech.
Called the armature [it is] in sliding contact with the rails. When a heavy
current begins to flow down one rail, across the bridge, and back in the
other rail, the armature is subjected to a strong electrodynamic force which
accelerates it down the rails. This force is transverse to the current [in the
bridge] and both Ampére’s and Lorentz’s laws agree on its magnitude. All
guns are subject to recoil forces. The railgun recoil has been shrouded in
mystery [with this I fully agree].

Ampére's law claims that the forward force in the armature is balanced
by two longitudinal rearward directed forces in the rail close behind the
armature [which is quite well formalized by the T = A concept].

[Thus] the rails will be pushed backwards, [deflected laterally, and
buckled]. On the other hand, if Lorentz's law is correct the rails will not
experience a recoil force and not buckle.

[Therein lies a great shared misunderstanding: along a straight tensed
filament opposite tensions do exist: a stretched string breaks under two
repulsive tensions. To actualize at any point, and allow measurement of
the tension dormant along a straight current, it suffices to insert a mercury
loaded junction.]”

From railgun recoil and buckling we now turn to exploding wires (Ref. 19,
pp. 148-151):

“The response of fuse wires to large current pulses was studied in Warsaw
by Jan Nasilowski. He noticed that a copper wire was shattered into small
pieces by large but short current pulses. The wire showed no sign of melting.
Metallurgical examination proved that every wire break was caused by an
impulse tension. Not knowing of Ampére tension Nasilowski was baffled.
[Long after] he was delighted with the Ampére force explanation.”
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If doubts remain concerning the existence of Ampére's repulsive stress tension
along a straight current of axis z and its rendering according to Mazwell’s
electromagnetism, here is a rejoinder. Maxwell’s “etheric” pressure (1/8x)B? in the
surrounding vacuum, integrated all over a plane orthogonal to z; builds up (as does
any positive energy density) a repulsive tension just equal to IA [the logarithmic
divergence in both can be removed by imagining a coaxial return current]. Assuming
adherence between the field and its source explains the fact.

While Graneau plays in the large, Saumont®® plays in the small,

— 7Y

(a) (b)

Fig. 3. (a) Atwood's machine: 5 = (M — m)/(M + m); (b) anti-recoil when pushing laterally a
toy aerostat: the system's barycenter moves backward.

His horizontal armature (Fig. 3), moving vertically, is a straight wire some 13 e¢m
long placed on the pan of a high precision mechanical (not electric) balance, Its ends,
bent down wards, dip in mercury-loaded cups connected with an electric generator.
The large fixed part of the circuit is horizontal and so, referring to formula (24)
above, it contributes not to the virtual work — which then equals the self-energy
of an ideal circuit defined as the difference between the final and initial positions of
the armature,

Ezperimentation evidences, as expected, an upward lift proportional to the square
intensity, of value independent of the armature’s length.

The ends of the severed fix and mobile parts of the circuit are enameled, cut
straight, with naked sections facing each other. Thus, the force that is measured is
parallel to the current inside the mercury, and repulsive.

Counter-tests confirm this. If the armature's ends make U turns, so that the
repulsive tension operates downwards, the measured force remains the same. If,
inside the mercury, the current runs up at one end and down at the other, a zero
force is measured. And if the current runs sideways in the mercury, a zero force is
also measured.

Other counter-tests eliminate artefacts. Moved up or down, the fixed portion
of the circuit regenerates the transverse BS force proportional to the armature's
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length. Care has been taken of the Archimedian lift on the armature's ends dipping
in mercury, and of the aerostatic one due to Joule heating.

So illustrating the argument of Section §, this set of ezperiments measures the
sum and the torque of the mutually opposite wrenches applied to each other by
complementary arcs of the circuit, in the form of paired opposite tensions of value
+IA locally tangent to the wire.

J. Mourier,?! expressing the self-induction coefficient k in terms of the ratio of
diameter to curvature radius of the armature terminals, and using the local BS
forces, gets good agreement with the measurements.

9. From Weber 1848 to Darwin 1920

Valid up to order (v/¢)? included, Darwin's** 1920 Galilean-invariant,
instantaneous-far-action approximation to electrodynamics is used in Coleman and
van Vleck’s® paper entitled “Hidden momentum in magnets.” Let us evidence some
far-reaching implications it has.

Defined @ la Sommerfeld, the effective mass of each point charge is

1
m=mo+§c"’(mov’+QV)+... : (30)
V denoting the variable electric potential created by the other charges in the

Coulomb gauge. The mutual energy contribution to the mass m has consequences
we will discuss, We note first that equipartition of the mutual energy of any two

charges is implied in formula (30).
Also follow® conservation of the system’s total mass
M=Y"m, (31)
barycentric moment
MR = Z mr , (32)
and total linear momentum
'y 1 ~2,.-8 2
PzMR’_va+§ZZc 2,-3Q.Qp " r + ..., (33)

Weber?* found in 1848 the electric contribution to inertia and the direct action-
reaction term displayed in formula (33); Darwin’s more rigorous approach generates
QA, not QVv, in each particle’s momentum, thus expressing non-collinearity of
velocity and electromagnetic momentum; then it is via summation that 3 QA =
STQVv. Darwin’s expression of each particle’s effective momentum is the low



velocity approximation to Wheeler-Feynman’s covariant formula (40) — which is
especially relevant for us.

Helmholtz objected to Weber's formula that it allows negative masses, which is
true of Darwin’s formula also and is discussed in the next section: point charge
immersed in a fieldless electric potential, the source of which is not freely falling, is
not freely falling either,

10. Coulomb Potential-Induced Archimedian Lift — or Rest

The Archimedian lift —mg felt by a body “displacing” a fluid mass m in the
presence of a gravity field g mimicks anti-gravity. It also mimicks anti-inertia as,
according to Einstein's inertia-gravity equivalence (including his elevator metaphor),
a body immersed in a fluid, the container of which is accelerated by g, displays a
negative extra inertia —mg. So a body “displacing” a fluid mass m behaves as
being endowed with a negative extra mass (not rest mass) —m. For example, inside
an accelerating (decelerating) caravan a toy helium balloon is projected forward
(backward); and if inside a parked caravan someone displaces laterally a toy balloon
resting at the ceiling via barycenter conservation the van anti-recoils, so that relative
to the background the person is moved forward (cf. Fig. 3).

Darwin’s formulas imply the ezistence of analogous electrodynamic phenomena.

Consider, in place of the van, an insulating uniformly charged sphere with inside
it a point charge replacing the balloon. In slow relative motion of the sphere, charge
uniformity of the enclosed Coulomb potential proper is maintained by the sphere’s
variable stress tension. As the sum of the stress-energy plus the half-mutual-energy
attached to the sphere remains zero, totality of the electrostatic mutual energy VQ
is reported on the point charge — a conclusion already drawn in the Introduction
from the timelike Aharonov-Bohm effect.

If both are at rest, sphere and charge exert no mutual forces. But if the sphere
is accelerated from outside, or the charge from inside, formula (32) requires that
the point charge of value @ should behave as being endowed with an extra mass
¢~?VQ; Einstein’s inertia-gravity equivalence then means that, inside a sphere at
V' > +511kV, an electron will levitate and a firing electron gun will anti-recoil.

These outrageous claims are derived straightaway from Darwin's semi-relativistic
electrodynamics, namely the Coleman-van-Vleck’s barycenter formula (32); can we
trust them?

Let us modify our thought experiment by placing the point charge @ on the axis
z of a cylindrical capacitor, thus immersing it in a uniform potential of expression
V' = qIn(ry/r2). Pictured a la Maxwell, the mutual energy VQ resides in the field
between the armatures with its barycenter at Q. Thus if slowly accelerated, or held

suspended in a uniform gravity field along 2, the point clmmez, shadowed by this
cloud, behaves as being endowed with the extra inertial mass ¢~ VQ.

11. Relativistic Far-Action-Reaction
in the Wheeler-Feynman Electrodynamics

Explicitly covariant @ la Minkowski, the Wheeler-Feynman'” ‘el'ectrodymmics of
point charges is best visnalized as a four-dimensional transposition of the statfcs
of filaments. An isomorphism exists between it and the Ampére magnetosu.stm
discussed in Section 6, the tramslation lexicon being: 3-space — &sp;sce-txme;
current wire of intensity I — timelike trajectory of charge Q; stress tension — 4-
momentum; linear force density — 4-force; torque — 6-angular momentum; energy

— action. ( 0. "
Using Fokker's definition of the mutual action of two point charges (i,j,k,[ =
1,2,3,4; 2t = ict; v* = a* — bY)

@ Loy = QuQub(r*)da;db’ (34)

[compare with (2)] and the source-adhering half-retarded half-advanced Liénard-
Weichert 4-potential [compare with (3)]

dA' @y = Y Qub(r?)db’ , (35)
which obeys the Lorentz condition
KA =0, (42)
WF derived for each point charge of combined 4-momentum
PP =mV*' 4+ QA (36)

and therefore combined action )
dL = Pz’ , (37)

the acceleration equation (ds? = —dz;dz’)
dP* = F'ds (38)
evidencing direct action-reaction between any two point charges
P F* = £Q,Qub'(r*)(dajdb’)r* (39)

[compare with (22)].
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Integrally equivalent to this “Ampere 4-force,” there is the a and b asymmetric
Lorentz 6-force Qo B(a)da; felt by each charge: from (35) we derive

QadA'(a) = 3~ Qub'(r*)ridb ,
which, subtracted from (39), yields
dp'n = Qa Y Qu'(r?)[db’ — r'db|da; .

.'I'heae WEF formulas entail a largely overlooked important consequence: any
point charge immersed in a source-adhering 4-potential of expression (85) carries
an ertra inertia QA*.

For example, while the Coulomb interaction force between two heavy point
charges at quasi-rest follows from (39), (36) confers on each an extra mass
(1/2)e™?r=1Q.Qs. There also follows from (39) the Weber-Darwin velocity-
dependent interaction force between moving charges — for instance, between two
successive electrons in a cathodic beam,

As is well known,® non-collinearity of 4-velocity V¢ (V' = —c?) and 4
momentum entails existence of a 6-torque; here, a “potential® torque is defined:

CY = Pivi - piyi (40)
the operational meaning of which is explained below. Qpposite potential 6-torques
d*’cY = +Q.Qy(r?)[da’dl’ — da’db'| (41)

are apPliez:l to each other by any two interacting charges [compare with (22)).

It is highly significant that: (1) use of the source-adhering Liénard- Wiechert
gauge (35) is required for getting the direct action-reaction equation (39); (2) from
it there necessarily follows' the Loventz condition

HA =0, (42)

From the first remark we derive a far-reaching, relativistically covariant state-
ment: accelerated by any means inside a given electromagnetic field, a point charge
Q displays an extra inertial {-momentum QA*, A* denoting the source-adhering 4-
potential. This, together with Einstein’s phenomenological inertia-gravity equivalent,
validates our frequent recourse to ideally weighing a system (or parts of it) inside a
uniform gravity field.

We shall now discuss operationality of the “potential” 6-torque (41). Its three
[u4] “boost” components were met with in the discussion of equation (33); its three

95

We shall now discuss operationality of the “potential” 6-torque (41). Its three
[u4] “boost” components were met with in the discussion of equation (33); its three
[uv] components, angular momentum proper, display their magic in the following
example.

Consider a charge Q flying at a velocity v parallel to a fixed infinitely long and
thin straight magnet trapping a flux ®. The paradox is that, while feeling no force,
the moving charge exerts, via its magnetic field B = E x v, a torque on the magnet,
the value of which is ®[B x dl] = —®(v - d1)E per line element. The integrated
torque comes out as —Q®V/2r, r denoting the constant distance between charge
and magnet. As the magnet's fieldless vector potential is of the value A = ®/27r, it
turns out that just opposite to the torque felt by the magnet there exists a “potential
torque” QA x v| attached to the flying charge.

Thus an angular momentum credit card (similar to the potential energy credit
card 8o widely used) is here accepted. If the magnet of axis = is not infinitely long,
but only very long, the charge, before and after running alongside it, passes near
a pole, feeling there the Lorentz force generated by a magnetic field coplanar with
z; there it initially deposits, and finally cashes, orbital angular momentum in the
form discussed above.

The preferred gauge here is the one expressing the reaction from the potential’s
source.

12. Angular Action-Reaction Opposition, a Feynman Lectures
Conundrum, and de Broglie’s Photon Spin Density

Going back to Section 3, we replace in equation (11) the point charge by a
uniformly charged circle coaxial with the dipole of moment M — a “parallel,” in
geographic jargon. Thus we are left with a purely angular momentum problem.

At the latitude e the circles's “potential angular momentum” has the value
VM cosa. I will argue that: (1) de Broglie's? concept of an electromagnetic spin
density of expression

a=zl;{—AxE+VH} (43)

must enter angular momentum balance; (2) as a consequence, an opposite angular
recos! appears in the magnet.

Readers of The Feynman Lectures on Physics are challenged®™ to refute so
outrageous a claim, the hint being that not the magnet, but the field, is the place
where the missing angular momentum builds up, in the form of orbital angular
momentum of the “mutual” Poynting vector E, x H,,. Existence of a “bootstrap
merry-go-round” then follows, as no photons are orbiting — and none could, because



the sphere’s energy quantum is the “anomalously” small one ?/R = (2/137)hv,
with v = ¢/R.
Le&mudiulioethepmblem‘byphdng,ﬂtheeen&rofaunlformlycbuged
insulating sphere, in its fieldless Coulomb potential V = Q/R, an initially
unmagnetized dipole ferromagnet. If, magnetizing spontaneously later, it generates
a maguetic moment M of axis 2, the induced electric field confers on the sphere an

angular momentum
Wt gvm (44)

(2/3 =1~ 1/3 expressing the difference between spin and precession mentioned in
Section 3).

If M is positive, a positively charged sphere will thus start rotating eastward,
like our Earth. As outside it the magnetic lines go from north to south, and as the
electric field points out, the Poynting vector blows eastward, like the tradewind; as

its angular momentum has the same sign as the sphere’s, it cannot compensate for
it.

Outside the sphere, at latitude a, the fields and potentials have as non-zero polar
components

E.=Qr?  B,=2Mr"%sina, B,=-Mr-3cosa,
V=@r, A¢= Mr~?sina ;

from these we get, outside the sphere, as density contributions to the Poynting
vector's orbital angular momentum,

d&°Cp = %E‘B,rsin 2a = +%r"QMsin2a
and to de Broglie's spin,

d*Cp = AE, cosa+ V(B, cosa + B, sina) = —r~4QM sin2a .

whence
(Cp + Cp)ou = —%r-‘qmmu )
Inside the sphere, where E =0 and V = const, we get

1
d(Cr)in = + -2-r"QM sin2a .
Integrating outside the sphere, from R to +o00, we get

(Cr +Chlow = ~Cp = ~3VM, (45)
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a formula saying that the (algebraic) sum of the Poynting vector orbital angular
momentum and of de Broglie’s spin density compensates ezactly for the sphere's
potential angular momentum Cg Physicality of the electric potential and of the
photon’s spin density could hardly be evidenced better.

Inside the sphere, the only density contribution to the volume integrals is VB =
V& x A, which (V being constant) transforms into a surface integral of value

2
Cgiin= +§VM = (46)

just equal to the sphere’s Cs. We thus infer that the magnet contains a “hidden
angular momentum” —Cg [note that (2/3)VM is the volume integral of —VB].

Thus, a zero total angular momentum state of the sphere-and-magnet system
is such that both pieces contain opposite electromagnetic angular momenta — in
accord with the action-reaction principle.

A thought (or why not real?) test could use the Einstein-de-Haas (EdH) effect
inside the sphere. At the voltage V such that the potential angular momentum
(2/3)VM is just opposite to that —(m/2¢)M due to the electron spin, the EdH effect
should be inhibited. As, with V5 ~ 511kV, (1/2)VpM expresses the ferromagnet’s
spin, this value is V =~ 383kV (beware: the whole experiment must be conducted
at this voltage: uncharging the sphere before making the measurement would
intercalate a counter effect).

To conclude: de Broglie's® concept of an electromagnetic spin density (cf.
expression (43)): (1) restores the right sign in the Feynman Lectures?” conundrum,
(2) validates action-reaction opposition between the sources of the (combined) field,
and (3) confers a testable physicality on the electric potential.

13. De Broglie's Photon Energy-Momentum and Spin Tensors
According to the theory of elasticity, u** = E™* — E*" (u,v = 1,2,3) is the local
torque density; from this, one infers? that in any medium or field endowed with a
spin density ¢ the energy-momentum density 7% (i, j, k[ = 1,2,3,4; a* = ict) is
asymmetric and obeys the relation
TH % le e 8‘0([118] ; (47)

where, inherently antisymmetric in its last two indexes, the spin density often is
fully antisymmetric.
Using the standard Minkowski-Maxwell equations
S opk=0, aH"=;* BY=HI+MY, (48)
[i3k]
BY =9 A — A, (49)
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we consider the -
o bﬂowhgthma:ymmetﬂcmgy momentum tensors: (1) Maxwell-
s | i
PV {B"‘m. + Z13,,,17“5"} j (50)
(2) de Broglie's™ photon canonical one, where [9*] denotes the Schrodinger or

Gordon operator (difference between the partial derivative operators to the ri
and to the left) iy e

1 Ll
i
P = ot 3 L (51)
and (3) one implicit all throngh Sections 2, 4, 5, 7,

ais L Bak el o
N¥ = o {A i+ 5.4.-_7‘6*‘} : (52)
Using de Broglie’s photon spin density
fije) _ 1 i i
a’l—FZAH"‘, (53)
[i7%]
and the magnetic polarization current density
14 = 3™ gk (54)
[isk]
we dfutive from the Minkowski-Maxwell equations (50) and (52) plus the Lorents
condition (40) the spin density conservation equation
Bio* 4 Al = (M + N 4 PY* — (M4 N+ P)% | (55)

to be compared with (48).

As is well known, the antisymmetric contribution to the Maxwell stress tensor
contains the electromagnetic torque and boost densities, E x P+ H x M and
D x B~ E x H. Similarly, the antisymmetric contribution to the A*j' tensor
contains the torque and boost densities A x j and gA — Vj previously encountered,

The 4-force densities attached to the three energy-momentum tensors are: (1)
the sum of the Lorentz and the Curie or Stern-Gerlach ones,

! S 1 ;
WM™ = B*jy + 1 Bulo'|HM ; (56)

(2) the sum of the Lorentz one, and of an unfamiliar one to be discussed in
Section 15,

: s Bd
N = —B% i + 2 AMOji (57)

CB.AS5 2€C3 (361 9C6.

(3) twice the sum of the two Stern-Gerlach style ones,
P™* = —3 Bl — A . (58)

De Broglie’s massive photon obeys Minkowski-Maxwell equations with Gordon's
operator replacing d’Alembert’s; Proca later proposed equivalent equations for a
spin 1 meson.

Let us recall briefly how de Broglie's photon spin density shows up in a
Maxwellian plane wave.

The general plane wave of time frequency v and space frequency k (k = v/c)
can be thought of as a superposition of two waves of opposite circular polarizations.
In a pure helicity state each photon has an energy hv and a spin +h/2r. The
mutnally orthogonal vectors E and H = 2xvA, of the same magnitude in mixed
units, rotate in the wave front, clockwise or anti-clockwise; (1/2)(E? + H?) = nhv
and A x H = xnh/2r respectively measure the energy and spin densities,

This holds for a massless photon. A massive photon flies not at the limiting
velocity e, but tends to do so as its frequency increases. Spin zero momentum-energy
carrying plane waves then exist, propagating a “longitudinal” electric field and
vector potential; the probability of their excitation is exceedingly weak.?®

14. Constant-Potential-Dependent Forces as Source Reactions

Associated with “hidden linear momentum in current loops” of expression (4)
is the ponderomotive force V(dI/dt)dl; and with the cemf generated along a
varied current by a permanent flux from outside, there is the emf IAdI/dt; and
with “hidden angular momentum in magnets,” there is the ponderomotive torque
VdM /dt.

All these are reactions from the constant potential’s source thought of as infinitely
heavy.

15. On the A*j' Energy-Momentum and A'm’* Spin Tensors

The space-time scalar A*j, a four-dimensional action density (and a three-
dimensional energy density Vg~ A +j), is a familiar factotum in Lagrangians “where
gauge dependence of just a calculation ingredient matters not.”

The gA and Vj components of the A*;', tensor build up the respective “hidden
momenta” in formulas (4) and (5).

The gauge-dependent 4-force density Ax[8']j* associated with this tensor in
equation (58) is not unfamiliar, as its time component is the difference of known
power densities; operationality of the space components then follows via relativistic
invariance. Ponderomotive or electromotive force densities such as Va,j, Adyq,
Ad,j, have repeatedly shown up in the preceding sections.
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As said before, this 4-force density appears as relating the tension T = JA
and the Biot-Savat force density /B x dl along a current loop. In general we find
(u,v,w=1,2,3)

Ly o BTl = 1[0, As — B AN + 10, A - dI” ; (59)
that is, the sum of the BS force plus this force.

Interlaced with a toroidal magnet (see Section 4) a current loop feels no force.
While the prevalent stance is “no Lorentz force, no force,” our is: “no BS force,
but exact compensation between tension and linear force density.” An analogous
statement holds along the toroidal magnet of Section 4, where no one disputes
the reality of the (unobserved) tension T = ®H and of the Stern-Gerlach force
fu =08, H, - div.

The spin density Vm, evidenced in formulas (13) and (46), is a component of
the tensor AUt

So the A*j' and A*m’* tensors are implied in any covariant formulation of the
phenomena discussed in this essay.

16. Lorentz Condition Revisited

The Lorentz condition, a very strong restriction on the gauge, requires that the
arbitrary scalar superpotential be a solution of d’Alembert’s equation — that is, a
sourceless propagating field magnitude.

The following statement then holds: the general solution of Maz'well s equations
i3 the sum of physical source-adhering solutions plus the ghostlike general solutson
of the homogeneous d’Alembert equation.

Plane wave d'Alembert solutions are “longitudinal waves"” propagating a fieldless
lightlike 4-potential, Discarding them as “unphysical” is a contrario conceding some
physicality to the transverse potential ...

Finally, how does the Lorentz condition 8 A* = 0 dovetail with the source-
adhering gauges?

Consider permanent regime cases, such as electrons orbiting a heavy nucleus, or
Aharonov-Bohm ones bypassing a long solenoid. A permanent regime is one such
that in some inertial frame all time derivatives of the field magnitudes are zero; so
8V = 0 and, via the Lorentz condition, 9+ A = 0 Thus the central Coulomb gauge
compatible with the Lorentz condition is defined as V = Q/r plus A = 0; and the
cylindrical Ampére gauge compatible with the Lorentz condition as A = r~2® x r
plus V = 0 (@ denoting the magnetic moment per line element). In either case,
we require that the 4-vector A* be zero at spatial infinity. The Liénard-Wiechert
gauge (retarded, advanced, or time-symmetric) — a four-dimensional extension of
the Coulomb and Ampére static gauges — satisfies the Lorentz condition.
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So the Lorentz condition is compatible with any source-adhering gauge defined
covariantly.

As source-adhering solutions of Maxwell's equations are the zero mass limits of
massive photon solutions, their use should be the norm.

17. Lorentz Condition in the Dirac Electron Theory

All textbooks explain gauge invariance of the Dirac electron theory, none
mentioning, however, that the Lorentz condition is inherent — as otherwise a scalar
field 8;4' would come up in the second order equation. And none mentions either
the following corollary. !

In 4-frequency terms, any gauge field obeying d’Alembert’s equation k;k* = 0
and the Lorentz condition k;A* = 0 constrains the gauge to 4;A* = 0. Thus a gauge
change on the free electron amounts to adding a lightlike vector to its 4-frequency: an
extreme-relativistic Lorentz transform implying zero electron mass. The conclusion
then is: in the unbounded vacuum the electron’s gauge must be A* = 0.

Consequently, a source-adhering gauge should be selected for any electromag-
netic potential embedding the electron — including fieldless ones. Such a gauge is
selected not from within, but from without the Dirac equation.

This is how action-reaction with an infinitely heavy source is taken care of:
a “macroscopic renormalization” of mass (not rest mass), momentum, or angular
momentum. For example, the zero of the energy eigenvalue of an electron guided
along the axis of an infinitely long cylindrical capacitor, thus bound to a positive
potential V, is at —c™%eV. The same is true for a hydrogen atom placed at the
center of a large uniformly charged sphere. Of course, part of the electronic wave
tunnels outside the container,

Anyone familiar with the Dirac equation knows existence of the 10 = 2 x 5
tensorial equations obtained by adding and subtracting the Dirac equation and
its adjoint after multiplying the former to the left by ¥y and the latter from the
right by y¥; these are known®® as the Franz-Kofink equations. In the absence of a
4-potential this system consists of two uncoupled subsystem of five equations, one
of electromagnetic and one of mechanical meaning. A non-zero A thus generates
an electro-mechanic coupling that is symmetric in the following sense.

Ten gauge-invariant space-time tensors exist in Dirac’s theory, namely: five
Dirac style ¥y and five Gordon or Schrodinger style W{(ih/4x)[8"] + eA'} W,
[@] denoting the Gordon operator, the difference between the partial derivative
operators to the right and to the left; both contributions in the latter five tensors
are gauge-dependent. Five of either the Dirac or the Schrodinger ten tensors have
an electric and five a mechanic meaning.

The symmetric, or crossed, coupling mediated by A* consists of this: the Dirac
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style “potential’ contribution in respectively an electric (mechanic) Gordon tensor
is mechanic (electric). Thus A® behaves as an electro-mechanic potential.

There are three mechanical Schrédinger style tensors, all of interest to us: the
canonical rank 2 energy-momentum density T, its trace T, and the canonical rank
3 spin density *li*), The potential contributions in these, namely A*j', A,j*, and
Afmi* (j* and m?* denoting Dirac’s 4-electric current and 6-polarization densities),
have repeatedly shown up in the preceding sections: A®j' contains the “hidden
momentum densities” Vj and gA and, by contraction, the energy density A -j;
A'm?* contains the “hidden angular momentum density” Vm.

S0, of the two gauge-dependent contributions in these gauge-invariant tensors,
the “potential” one expresses the ponderomotive force or torque, the other one the
electromotive force or torque.

18. Conclusion: Electro-gravific Interaction

That contact-action and far-action are alternative conceptualizations and for-
malizations of electrodynamics has been exemplified @ la Diogenes by Wheeler and
Feynman.?® In an earlier paper®® they had shown mathematical equivalence of
Maxwellian retarded solutions including the Lorentz damping force, or advanced
solutions including a Lorentz anti-damping force, or half-retarded half-advanced
solutions with no damping force insofar as nothing other than mechanical inertia
and electromagnetic interaction is considered. )

Electro-gravific interaction, a leitmotiv throughout our essay, includes the
statement that QA' with A' expressed in the source-adhering gauge is an extra
inertia to a charge immersed in a given electromagnetic field — one more hint that
the 4-potential is a keystone between electricity and gravity. If so, the “de Broglie
formula™

Pl =myVi-eA' = ih;k‘ (61)

should be contemplated in its full-fledged expression® rather than in the shortened
form generally quoted.

The presently accepted “Einstein-Maxwell theory” inserts the symmetric free
field Maxwell stress tensor in the source of gravity, Our arguments, all expressed
in terms “manifestly compatible” with the SRT, converge towards the idea that
the symmetric A¥j' tensor should be included as gravity source in an “Einstein-
Cartan™" formalism, Explanation of effects such as Graneau’s and Saumont’s, and
prediction of others like linear and angular recoil effects, have been proposed. Via
asymmetry of the energy-momentum tensors, spin, together with boost its twin,
enter the picture — which automatically follows if interacting Dirac electrons and
de Broglie massive photons are used as gravity sources.
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19. Appendix: Euclidean-Galilean Rigid Bodies and Wrenches

The general Euclidean displacement of a rigid body consists of a translation
and a rotation. At any Galilean time t a rigid body moving in an inertial frame
is thus endowed with “instantaneous” linear V and angular A velocities. Between
the velocities P; and Pj of two points P; and P; in the solid, there exist the vector
relations

SP— Py = (P~ P,)- (PL-P)) =0,
P;—P:=AX(P‘,—P().

The condition A x P} = 0, A # 0, uniquely defines the axis of the A&V wrench
and the “tangent helical motion,”

The wrench concept also turns up in the statics of solids. A system of forces
applied at points of a solid has a “sum” 8 and, at any point P;, a “moment” M;;
the following vector relations hold:

(P; - Pj) - (M; = M;) =0,
M; -M; =S x (P; - Pi).

Again, if 8 # 0, there is an “axis” along which 8 x M; = 0.

Not only in the statics and kinematics, but also in the dynamics of solids, is the
wrench concept useful: the power exerted by a wrench of forces moving a solid is
S V+M-A
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THE SYMMETRY BETWEEN ELECTRICITY AND
MAGNETISM AND THE PROBLEM OF THE
EXISTENCE OF A MAGNETIC MONOPOLE

Georges Lochak
Fondation Louis de Broglie
23, quai de Conti 75006 Paris, France

1. Introduction

It seems fair to say that there are about as many physicists who
consider the magnetic monopole as a monster hidden in the depths
of the Loch Ness, as there are who regard this idea as so necessary
for the beauty of nature, that God cannot possibly have failed to
think about it. I belong of course to the latter species !

It is well known that the hypothesis of separated magnetic poles is
an old one, but the present paper is neither devoted to its history
nor to a comprehensive bibliography on the subject : there already
exist several papers or books of this kind [1], [2], [3], [4]. Here, we
shall quote only those papers that are useful for our purpose, which
is to give arguments in favor of the hypothesis of magnetic
monopoles, the possibility of their observation and the explanation
of the fact that they were not yet observed with certainty.

Therefore, we shall not survey all aspects of the problem. In
particular, although this is a commonly favoured point of view,
there will be no further mention of a possible hyper-heavy
monopole. Keeping away from G.U.T., we shall remain in the
framework of electrodynamics. On the other hand, we shall not
confine ourselves to symmetry arguments, but shall present a wave
equation for a magnetic monopole, which parallels the Dirac
equation for the electron. This equation describes a monopole quite
different from the one which is usually considered, but it satisfies
all the electrodynamical, mechanical and gauge properties
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